File size: 21,673 Bytes
2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 16ef1bd 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 16ef1bd 2e6063c 16ef1bd 2e6063c 16ef1bd 2e6063c 16ef1bd 2e6063c 16ef1bd 2e6063c 16ef1bd 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c 3f63fe3 16ef1bd 3f63fe3 16ef1bd 3f63fe3 16ef1bd 3f63fe3 16ef1bd 3f63fe3 16ef1bd 3f63fe3 16ef1bd 3f63fe3 16ef1bd 3f63fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
import random
from pathlib import Path
from datetime import datetime, timedelta
import edge_tts
import asyncio
import requests
from collections import defaultdict
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
from datasets import load_dataset
import base64
import re
# -------------------- Configuration & Constants --------------------
# User name assignment
USER_NAMES = [
"Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn",
"Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall",
"Parker", "Dakota", "Sage", "Finley"
]
ROWS_PER_PAGE = 100
MIN_SEARCH_SCORE = 0.3
EXACT_MATCH_BOOST = 2.0
SAVED_INPUTS_DIR = "saved_inputs"
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
# -------------------- Session State Initialization --------------------
SESSION_VARS = {
'search_history': [],
'last_voice_input': "",
'transcript_history': [],
'should_rerun': False,
'search_columns': [],
'initial_search_done': False,
'tts_voice': "en-US-AriaNeural",
'arxiv_last_query': "",
'dataset_loaded': False,
'current_page': 0,
'data_cache': None,
'dataset_info': None,
'nps_submitted': False,
'nps_last_shown': None,
'old_val': None,
'voice_text': None,
'user_name': None, # Track user name
'max_items': 100 # Default max items
}
for var, default in SESSION_VARS.items():
if var not in st.session_state:
st.session_state[var] = default
# Assign user name if not assigned
if st.session_state['user_name'] is None:
st.session_state['user_name'] = random.choice(USER_NAMES)
# -------------------- Utility Functions --------------------
def create_voice_component():
"""Create the voice input component"""
mycomponent = components.declare_component(
"mycomponent",
path="mycomponent"
)
return mycomponent
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Generate audio using Edge TTS"""
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
"""Play and provide download link for audio"""
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
@st.cache_resource
def get_model():
return SentenceTransformer('all-MiniLM-L6-v2')
@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
try:
start_idx = page * rows_per_page
end_idx = start_idx + rows_per_page
dataset = load_dataset(
dataset_id,
token=token,
streaming=False,
split=f'train[{start_idx}:{end_idx}]'
)
return pd.DataFrame(dataset)
except Exception as e:
st.error(f"Error loading page {page}: {str(e)}")
return pd.DataFrame()
@st.cache_data
def get_dataset_info(dataset_id, token):
try:
dataset = load_dataset(dataset_id, token=token, streaming=True)
return dataset['train'].info
except Exception as e:
st.error(f"Error loading dataset info: {str(e)}")
return None
def fetch_dataset_info(dataset_id):
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
try:
response = requests.get(info_url, timeout=30)
if response.status_code == 200:
return response.json()
except Exception as e:
st.warning(f"Error fetching dataset info: {e}")
return None
def generate_filename(text):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
safe_text = re.sub(r'[-\s]+', '-', safe_text)
return f"{timestamp}_{safe_text}.md"
def save_input_as_md(text):
if not text.strip():
return
fn = generate_filename(text)
full_path = os.path.join(SAVED_INPUTS_DIR, fn)
with open(full_path, 'w', encoding='utf-8') as f:
f.write(f"# User: {st.session_state['user_name']}\n")
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(text)
return full_path
def list_saved_inputs():
files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
return files
def render_result(result, index=None):
score = result.get('relevance_score', 0)
result_filtered = {k: v for k, v in result.items()
if k not in ['relevance_score', 'video_embed', 'description_embed', 'audio_embed']}
if 'youtube_id' in result:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
cols = st.columns([2, 1])
with cols[0]:
text_content = []
for key, value in result_filtered.items():
if isinstance(value, (str, int, float)):
st.write(f"**{key}:** {value}")
if isinstance(value, str) and len(value.strip()) > 0:
text_content.append(f"{key}: {value}")
with cols[1]:
st.metric("Relevance", f"{score:.2%}")
voices = {
"Aria (US Female)": "en-US-AriaNeural",
"Guy (US Male)": "en-US-GuyNeural",
"Sonia (UK Female)": "en-GB-SoniaNeural",
"Tony (UK Male)": "en-GB-TonyNeural"
}
# Ensure unique keys by using the index
voice_key = f"voice_{index}" if index is not None else f"voice_{id(result)}"
selected_voice = st.selectbox(
"Voice:",
list(voices.keys()),
key=voice_key
)
read_key = f"read_{voice_key}"
if st.button("π Read", key=read_key):
text_to_read = ". ".join(text_content)
audio_file = speak_with_edge_tts(text_to_read, voices[selected_voice])
if audio_file:
play_and_download_audio(audio_file)
class FastDatasetSearcher:
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
self.dataset_id = dataset_id
self.text_model = get_model()
self.token = os.environ.get('DATASET_KEY')
if not self.token:
st.error("Please set the DATASET_KEY environment variable")
st.stop()
if st.session_state['dataset_info'] is None:
st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)
def load_page(self, page=0):
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
def quick_search(self, query, df):
if df.empty or not query.strip():
return df
try:
searchable_cols = []
if len(df) > 0:
for col in df.columns:
sample_val = df[col].iloc[0]
if not isinstance(sample_val, (np.ndarray, bytes)):
searchable_cols.append(col)
query_lower = query.lower()
query_terms = set(query_lower.split())
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
scores = []
matched_any = []
for _, row in df.iterrows():
text_parts = []
row_matched = False
exact_match = False
priority_fields = ['description', 'matched_text']
other_fields = [col for col in searchable_cols if col not in priority_fields]
for col in priority_fields:
if col in row:
val = row[col]
if val is not None:
val_str = str(val).lower()
if query_lower in val_str.split():
exact_match = True
if any(term in val_str.split() for term in query_terms):
row_matched = True
text_parts.append(str(val))
for col in other_fields:
val = row[col]
if val is not None:
val_str = str(val).lower()
if query_lower in val_str.split():
exact_match = True
if any(term in val_str.split() for term in query_terms):
row_matched = True
text_parts.append(str(val))
text = ' '.join(text_parts)
if text.strip():
text_tokens = set(text.lower().split())
matching_terms = query_terms.intersection(text_tokens)
keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
combined_score = 0.7 * keyword_score + 0.3 * semantic_score
if exact_match:
combined_score *= EXACT_MATCH_BOOST
elif row_matched:
combined_score *= 1.2
else:
combined_score = 0.0
row_matched = False
scores.append(combined_score)
matched_any.append(row_matched)
results_df = df.copy()
results_df['score'] = scores
results_df['matched'] = matched_any
filtered_df = results_df[
(results_df['matched']) |
(results_df['score'] > MIN_SEARCH_SCORE)
]
return filtered_df.sort_values('score', ascending=False)
except Exception as e:
st.error(f"Search error: {str(e)}")
return df
# -------------------- Main App --------------------
def main():
st.title("π₯ Smart Video & Voice Search")
# Load saved inputs (conversation history)
saved_files = list_saved_inputs()
# Initialize components
voice_component = create_voice_component()
search = FastDatasetSearcher()
# Voice input at top level
voice_val = voice_component(my_input_value="Start speaking...")
# User can override max items
with st.sidebar:
st.write(f"**Current User:** {st.session_state['user_name']}")
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
st.subheader("π Saved Inputs:")
# Show saved md files in order
for fpath in saved_files:
fname = os.path.basename(fpath)
st.write(f"- [{fname}]({fpath})")
if voice_val:
voice_text = str(voice_val).strip()
edited_input = st.text_area("βοΈ Edit Voice Input:", value=voice_text, height=100)
# Auto-run default True now
run_option = st.selectbox("Select Search Type:",
["Quick Search", "Deep Search", "Voice Summary"])
col1, col2 = st.columns(2)
with col1:
autorun = st.checkbox("β‘ Auto-Run", value=True)
with col2:
full_audio = st.checkbox("π Full Audio", value=False)
input_changed = (voice_text != st.session_state.get('old_val'))
if autorun and input_changed:
# Save input as md file immediately
saved_path = save_input_as_md(edited_input)
st.session_state['old_val'] = voice_text
with st.spinner("Processing voice input..."):
# Instead of just top 20, show up to max_items in order
if run_option == "Quick Search":
df = search.load_page()
results = search.quick_search(edited_input, df)
# Show results in order, stopping at max_items
shown = 0
for i, result in enumerate(results.iterrows(), 1):
if shown >= st.session_state['max_items']:
break
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result[1], index=i)
shown += 1
elif run_option == "Deep Search":
# For deep search, iterate through pages until we hit max_items
results_all = []
page = 0
while len(results_all) < st.session_state['max_items']:
df = search.load_page(page)
if df.empty:
break
these_results = search.quick_search(edited_input, df)
if these_results.empty:
break
results_all.extend(these_results.iterrows())
page += 1
shown = 0
for i, result in enumerate(results_all, 1):
if shown >= st.session_state['max_items']:
break
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result[1], index=i)
shown += 1
elif run_option == "Voice Summary":
audio_file = speak_with_edge_tts(edited_input)
if audio_file:
play_and_download_audio(audio_file)
elif st.button("π Search", key="voice_input_search"):
# Manual search trigger
# Save input as md file
saved_path = save_input_as_md(edited_input)
st.session_state['old_val'] = voice_text
with st.spinner("Processing..."):
df = search.load_page()
results = search.quick_search(edited_input, df)
shown = 0
for i, result in enumerate(results.iterrows(), 1):
if shown >= st.session_state['max_items']:
break
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result[1], index=i)
shown += 1
# Tabs
tab1, tab2, tab3, tab4 = st.tabs([
"π Search", "ποΈ Voice", "πΎ History", "βοΈ Settings"
])
with tab1:
st.subheader("π Search")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter search query:",
value="" if st.session_state['initial_search_done'] == False else "")
with col2:
# Not strictly filtering by column now; user requested just show in order
search_column = st.selectbox("Search in:", ["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Max results:", 1, 100, 20)
with col4:
search_button = st.button("π Search", key="main_search_button")
if (search_button or not st.session_state['initial_search_done']) and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
df = search.load_page()
results = search.quick_search(query, df)
if len(results) > 0:
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
st.write(f"Found {len(results)} results:")
shown = 0
for i, (_, result) in enumerate(results.iterrows(), 1):
if shown >= num_results:
break
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result, index=i)
shown += 1
else:
st.warning("No matching results found.")
with tab2:
st.subheader("ποΈ Voice Input")
st.write("Use the voice input above to start speaking, or record a new message:")
col1, col2 = st.columns(2)
with col1:
if st.button("ποΈ Start New Recording", key="start_recording_button"):
st.session_state['recording'] = True
st.experimental_rerun()
with col2:
if st.button("π Stop Recording", key="stop_recording_button"):
st.session_state['recording'] = False
st.experimental_rerun()
if st.session_state.get('recording', False):
voice_component = create_voice_component()
new_val = voice_component(my_input_value="Recording...")
if new_val:
st.text_area("Recorded Text:", value=new_val, height=100)
if st.button("π Search with Recording", key="recording_search_button"):
# Save this input right away
saved_path = save_input_as_md(new_val)
with st.spinner("Processing recording..."):
df = search.load_page()
results = search.quick_search(new_val, df)
shown = 0
for i, (_, result) in enumerate(results.iterrows(), 1):
if shown >= st.session_state['max_items']:
break
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result, index=i)
shown += 1
with tab3:
st.subheader("πΎ Search History")
if not st.session_state['search_history']:
st.info("No search history yet. Try searching for something!")
else:
for entry in reversed(st.session_state['search_history']):
with st.expander(f"π {entry['timestamp']} - {entry['query']}", expanded=False):
for i, result in enumerate(entry['results'], 1):
st.write(f"**Result {i}:**")
if isinstance(result, pd.Series):
render_result(result, index=i)
else:
st.write(result)
with tab4:
st.subheader("βοΈ Settings")
st.write("Voice Settings:")
default_voice = st.selectbox(
"Default Voice:",
[
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-GB-SoniaNeural",
"en-GB-TonyNeural"
],
index=0,
key="default_voice_setting"
)
st.write("Search Settings:")
st.slider("Minimum Search Score:", 0.0, 1.0, MIN_SEARCH_SCORE, 0.1, key="min_search_score")
st.slider("Exact Match Boost:", 1.0, 3.0, EXACT_MATCH_BOOST, 0.1, key="exact_match_boost")
if st.button("ποΈ Clear Search History", key="clear_history_button"):
st.session_state['search_history'] = []
st.success("Search history cleared!")
st.experimental_rerun()
# Sidebar metrics
with st.sidebar:
st.subheader("π Search Metrics")
total_searches = len(st.session_state['search_history'])
st.metric("Total Searches", total_searches)
if total_searches > 0:
recent_searches = st.session_state['search_history'][-5:]
st.write("Recent Searches:")
for entry in reversed(recent_searches):
st.write(f"π {entry['query']}")
if __name__ == "__main__":
main()
|