File size: 17,314 Bytes
642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 1158250 642b060 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import requests
from collections import defaultdict
import re
from urllib.parse import quote
from xml.etree import ElementTree as ET
import base64
from PIL import Image
# -----------------------------------------
# Session State Initialization
# -----------------------------------------
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
st.session_state['arxiv_last_query'] = ""
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
if 'current_file' not in st.session_state:
st.session_state['current_file'] = None
if 'file_content' not in st.session_state:
st.session_state['file_content'] = ""
# -----------------------------------------
# Utility Functions
# -----------------------------------------
def highlight_text(text, query):
"""Highlight case-insensitive occurrences of query in text with bold formatting."""
if not query:
return text
pattern = re.compile(re.escape(query), re.IGNORECASE)
return pattern.sub(lambda m: f"**{m.group(0)}**", text)
@st.cache_data(show_spinner=False)
def fetch_dataset_rows():
"""Fetch dataset from Hugging Face API and cache it."""
try:
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
response = requests.get(url, timeout=30)
if response.status_code == 200:
data = response.json()
if 'rows' in data:
processed_rows = []
for row_data in data['rows']:
row = row_data.get('row', row_data)
# Convert embed fields from strings to arrays
for key in row:
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
if isinstance(row[key], str):
try:
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
except:
continue
processed_rows.append(row)
df = pd.DataFrame(processed_rows)
st.session_state['search_columns'] = [col for col in df.columns
if col not in ['video_embed', 'description_embed', 'audio_embed']]
return df
except:
pass
return load_example_data()
def load_example_data():
"""Load example data as fallback."""
example_data = [
{
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
"youtube_id": "IO-vwtyicn4",
"description": "This video shows a close-up of an ancient text carved into a surface.",
"views": 45489,
"start_time": 1452,
"end_time": 1458,
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
}
]
return pd.DataFrame(example_data)
@st.cache_data(show_spinner=False)
def load_dataset():
df = fetch_dataset_rows()
return df
def prepare_features(dataset):
"""Prepare embeddings with adaptive field detection."""
try:
embed_cols = [col for col in dataset.columns
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
embeddings = {}
for col in embed_cols:
try:
data = []
for row in dataset[col]:
if isinstance(row, str):
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
elif isinstance(row, list):
values = row
else:
continue
data.append(values)
if data:
embeddings[col] = np.array(data)
except:
continue
# Assign default embeddings
video_embeds = embeddings.get('video_embed', None)
text_embeds = embeddings.get('description_embed', None)
# If missing either, fall back to what is available
if video_embeds is None and embeddings:
video_embeds = next(iter(embeddings.values()))
if text_embeds is None:
text_embeds = video_embeds if video_embeds is not None else np.random.randn(len(dataset), 384)
if video_embeds is None:
# Fallback to random embeddings if none found
num_rows = len(dataset)
video_embeds = np.random.randn(num_rows, 384)
text_embeds = np.random.randn(num_rows, 384)
return video_embeds, text_embeds
except:
# Fallback to random embeddings
num_rows = len(dataset)
return np.random.randn(num_rows, 384), np.random.randn(num_rows, 384)
class VideoSearch:
def __init__(self):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.dataset = load_dataset()
self.video_embeds, self.text_embeds = prepare_features(self.dataset)
def search(self, query, column=None, top_k=20):
# If no query, return all records
if not query.strip():
# Just return all rows as results
results = []
df_copy = self.dataset.copy()
# Add a neutral relevance score (e.g. 1.0)
for row in df_copy.itertuples():
result = {'relevance_score': 1.0}
for col in df_copy.columns:
if col not in ['video_embed', 'description_embed', 'audio_embed']:
result[col] = getattr(row, col)
results.append(result)
return results[:top_k]
# Semantic search
query_embedding = self.text_model.encode([query])[0]
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
combined_sims = 0.5 * video_sims + 0.5 * text_sims
# If a column is selected (not All Fields), strictly filter by textual match
if column and column in self.dataset.columns and column != "All Fields":
mask = self.dataset[column].astype(str).str.contains(query, case=False, na=False)
combined_sims = combined_sims[mask]
filtered_dataset = self.dataset[mask].copy()
else:
filtered_dataset = self.dataset.copy()
# Get top results
top_k = min(top_k, len(combined_sims))
if top_k == 0:
return []
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
results = []
filtered_dataset = filtered_dataset.iloc[top_indices]
filtered_sims = combined_sims[top_indices]
for idx, row in zip(top_indices, filtered_dataset.itertuples()):
result = {'relevance_score': float(filtered_sims[list(top_indices).index(idx)])}
for col in filtered_dataset.columns:
if col not in ['video_embed', 'description_embed', 'audio_embed']:
result[col] = getattr(row, col)
results.append(result)
return results
# -----------------------------------------
# Arxiv Search Functions
# -----------------------------------------
def arxiv_search(query, max_results=5):
"""Perform a simple Arxiv search using their API and return top results."""
if not query.strip():
return []
base_url = "http://export.arxiv.org/api/query?"
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
r = requests.get(search_url)
if r.status_code == 200:
root = ET.fromstring(r.text)
ns = {'atom': 'http://www.w3.org/2005/Atom'}
entries = root.findall('atom:entry', ns)
results = []
for entry in entries:
title = entry.find('atom:title', ns).text.strip()
summary = entry.find('atom:summary', ns).text.strip()
link = None
for l in entry.findall('atom:link', ns):
if l.get('type') == 'text/html':
link = l.get('href')
break
results.append((title, summary, link))
return results
return []
def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
results = arxiv_search(q, max_results=5)
if not results:
st.write("No Arxiv results found.")
return
st.markdown(f"**Arxiv Search Results for '{q}':**")
for i, (title, summary, link) in enumerate(results, start=1):
st.markdown(f"**{i}. {title}**")
st.write(summary)
if link:
st.markdown(f"[View Paper]({link})")
# -----------------------------------------
# File Manager
# -----------------------------------------
def show_file_manager():
"""Display file manager interface for uploading and browsing local files."""
st.subheader("π File Manager")
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
if uploaded_file:
with open(uploaded_file.name, "wb") as f:
f.write(uploaded_file.getvalue())
st.success(f"Uploaded: {uploaded_file.name}")
st.session_state.should_rerun = True
with col2:
if st.button("π Clear All Files"):
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
os.remove(f)
st.success("All files cleared!")
st.session_state.should_rerun = True
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
if files:
st.write("### Existing Files")
for f in files:
with st.expander(f"π {os.path.basename(f)}"):
if f.endswith('.mp3'):
st.audio(f)
else:
with open(f, 'r', encoding='utf-8') as file:
st.text_area("Content", file.read(), height=100)
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
os.remove(f)
st.session_state.should_rerun = True
# -----------------------------------------
# Editor: Allow user to select a text file and edit it
# -----------------------------------------
def display_editor():
# Let user pick a file from local directory to edit
text_files = glob.glob("*.txt") + glob.glob("*.md")
selected_file = st.selectbox("Select a file to edit:", ["None"] + text_files)
if selected_file != "None":
with open(selected_file, 'r', encoding='utf-8') as f:
content = f.read()
new_content = st.text_area("βοΈ Edit Content:", value=content, height=300)
if st.button("πΎ Save"):
with open(selected_file, 'w', encoding='utf-8') as f:
f.write(new_content)
st.success("File saved!")
st.session_state.should_rerun = True
# -----------------------------------------
# Media (Images & Videos)
# -----------------------------------------
def show_media():
st.header("πΈ Images & π₯ Videos")
tabs = st.tabs(["πΌ Images", "π₯ Video"])
with tabs[0]:
imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
if imgs:
c = st.slider("Columns", 1, 5, 3)
cols = st.columns(c)
for i, f in enumerate(imgs):
with cols[i % c]:
st.image(Image.open(f), use_column_width=True)
else:
st.write("No images found.")
with tabs[1]:
vids = glob.glob("*.mp4") + glob.glob("*.webm") + glob.glob("*.mov")
if vids:
for v in vids:
with st.expander(f"π₯ {os.path.basename(v)}"):
st.video(v)
else:
st.write("No videos found.")
# -----------------------------------------
# Video Search
# -----------------------------------------
def display_video_search():
st.subheader("Search Videos")
search_instance = VideoSearch()
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter your search query:", value="ancient" if not st.session_state['initial_search_done'] else "")
with col2:
search_column = st.selectbox("Search in field:", ["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Number of results:", 1, 100, 20)
with col4:
search_button = st.button("π Search")
if (search_button or not st.session_state['initial_search_done']) and query is not None:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = search_instance.search(query, selected_column, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
for i, result in enumerate(results, 1):
highlighted_desc = highlight_text(result['description'], query)
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i == 1)):
cols = st.columns([2, 1])
with cols[0]:
st.markdown("**Description:**")
st.write(highlighted_desc)
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
st.markdown(f"**Views:** {result['views']:,}")
with cols[1]:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
# -----------------------------------------
# Main Application (Integrated)
# -----------------------------------------
def main():
st.sidebar.markdown("### π²BikeAIπ Multi-Agent Research")
# We remove the "π€ Voice" option since voice input is removed
tab_main = st.sidebar.radio("Action:", ["πΈ Media", "π ArXiv", "π Editor"])
# File manager in the sidebar
with st.sidebar:
st.subheader("βοΈ Settings & History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
for i, result in enumerate(entry['results'], 1):
st.write(f"{i}. {result['description'][:100]}...")
st.markdown("### TTS Voice (unused)")
st.selectbox("TTS Voice:",
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
key="tts_voice")
# Main content based on selection
if tab_main == "πΈ Media":
# Show media and video search combined
show_media()
st.write("---")
display_video_search()
elif tab_main == "π ArXiv":
st.subheader("Arxiv Search")
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
vocal_summary = st.checkbox("π Short Audio Summary (Placeholder - no TTS actually)", value=True)
titles_summary = st.checkbox("π Titles Only", value=True)
full_audio = st.checkbox("π Full Audio Results (Placeholder)", value=False)
if st.button("π Arxiv Search"):
st.session_state['arxiv_last_query'] = q
perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)
elif tab_main == "π Editor":
show_file_manager()
st.write("---")
display_editor()
# Rerun if needed
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.experimental_rerun()
if __name__ == "__main__":
main()
|