File size: 17,314 Bytes
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158250
 
642b060
1158250
 
 
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158250
 
 
 
642b060
1158250
 
 
642b060
 
 
 
 
 
 
1158250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
 
 
1158250
 
642b060
 
1158250
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158250
642b060
 
 
 
 
 
 
 
 
 
1158250
642b060
1158250
 
 
642b060
 
1158250
 
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
1158250
642b060
1158250
 
 
 
 
 
 
 
642b060
1158250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
1158250
642b060
 
 
 
1158250
 
642b060
 
 
 
 
 
1158250
642b060
 
 
 
1158250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642b060
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import requests
from collections import defaultdict
import re
from urllib.parse import quote
from xml.etree import ElementTree as ET
import base64
from PIL import Image

# -----------------------------------------
# Session State Initialization
# -----------------------------------------
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
    st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
    st.session_state['arxiv_last_query'] = ""
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None
if 'current_file' not in st.session_state:
    st.session_state['current_file'] = None
if 'file_content' not in st.session_state:
    st.session_state['file_content'] = ""

# -----------------------------------------
# Utility Functions
# -----------------------------------------
def highlight_text(text, query):
    """Highlight case-insensitive occurrences of query in text with bold formatting."""
    if not query:
        return text
    pattern = re.compile(re.escape(query), re.IGNORECASE)
    return pattern.sub(lambda m: f"**{m.group(0)}**", text)

@st.cache_data(show_spinner=False)
def fetch_dataset_rows():
    """Fetch dataset from Hugging Face API and cache it."""
    try:
        url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
        response = requests.get(url, timeout=30)
        if response.status_code == 200:
            data = response.json()
            if 'rows' in data:
                processed_rows = []
                for row_data in data['rows']:
                    row = row_data.get('row', row_data)
                    # Convert embed fields from strings to arrays
                    for key in row:
                        if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
                            if isinstance(row[key], str):
                                try:
                                    row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
                                except:
                                    continue
                    processed_rows.append(row)

                df = pd.DataFrame(processed_rows)
                st.session_state['search_columns'] = [col for col in df.columns 
                                                      if col not in ['video_embed', 'description_embed', 'audio_embed']]
                return df
    except:
        pass
    return load_example_data()

def load_example_data():
    """Load example data as fallback."""
    example_data = [
        {
            "video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
            "youtube_id": "IO-vwtyicn4",
            "description": "This video shows a close-up of an ancient text carved into a surface.",
            "views": 45489,
            "start_time": 1452,
            "end_time": 1458,
            "video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
            "description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
        }
    ]
    return pd.DataFrame(example_data)

@st.cache_data(show_spinner=False)
def load_dataset():
    df = fetch_dataset_rows()
    return df

def prepare_features(dataset):
    """Prepare embeddings with adaptive field detection."""
    try:
        embed_cols = [col for col in dataset.columns 
                     if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]

        embeddings = {}
        for col in embed_cols:
            try:
                data = []
                for row in dataset[col]:
                    if isinstance(row, str):
                        values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
                    elif isinstance(row, list):
                        values = row
                    else:
                        continue
                    data.append(values)

                if data:
                    embeddings[col] = np.array(data)
            except:
                continue

        # Assign default embeddings
        video_embeds = embeddings.get('video_embed', None)
        text_embeds = embeddings.get('description_embed', None)

        # If missing either, fall back to what is available
        if video_embeds is None and embeddings:
            video_embeds = next(iter(embeddings.values()))
        if text_embeds is None:
            text_embeds = video_embeds if video_embeds is not None else np.random.randn(len(dataset), 384)

        if video_embeds is None:
            # Fallback to random embeddings if none found
            num_rows = len(dataset)
            video_embeds = np.random.randn(num_rows, 384)
            text_embeds = np.random.randn(num_rows, 384)

        return video_embeds, text_embeds
    except:
        # Fallback to random embeddings
        num_rows = len(dataset)
        return np.random.randn(num_rows, 384), np.random.randn(num_rows, 384)

class VideoSearch:
    def __init__(self):
        self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.dataset = load_dataset()
        self.video_embeds, self.text_embeds = prepare_features(self.dataset)

    def search(self, query, column=None, top_k=20):
        # If no query, return all records
        if not query.strip():
            # Just return all rows as results
            results = []
            df_copy = self.dataset.copy()
            # Add a neutral relevance score (e.g. 1.0)
            for row in df_copy.itertuples():
                result = {'relevance_score': 1.0}
                for col in df_copy.columns:
                    if col not in ['video_embed', 'description_embed', 'audio_embed']:
                        result[col] = getattr(row, col)
                results.append(result)
            return results[:top_k]

        # Semantic search
        query_embedding = self.text_model.encode([query])[0]
        video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
        text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
        combined_sims = 0.5 * video_sims + 0.5 * text_sims

        # If a column is selected (not All Fields), strictly filter by textual match
        if column and column in self.dataset.columns and column != "All Fields":
            mask = self.dataset[column].astype(str).str.contains(query, case=False, na=False)
            combined_sims = combined_sims[mask]
            filtered_dataset = self.dataset[mask].copy()
        else:
            filtered_dataset = self.dataset.copy()

        # Get top results
        top_k = min(top_k, len(combined_sims))
        if top_k == 0:
            return []
        top_indices = np.argsort(combined_sims)[-top_k:][::-1]

        results = []
        filtered_dataset = filtered_dataset.iloc[top_indices]
        filtered_sims = combined_sims[top_indices]
        for idx, row in zip(top_indices, filtered_dataset.itertuples()):
            result = {'relevance_score': float(filtered_sims[list(top_indices).index(idx)])}
            for col in filtered_dataset.columns:
                if col not in ['video_embed', 'description_embed', 'audio_embed']:
                    result[col] = getattr(row, col)
            results.append(result)

        return results

# -----------------------------------------
# Arxiv Search Functions
# -----------------------------------------
def arxiv_search(query, max_results=5):
    """Perform a simple Arxiv search using their API and return top results."""
    if not query.strip():
        return []
    base_url = "http://export.arxiv.org/api/query?"
    search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
    r = requests.get(search_url)
    if r.status_code == 200:
        root = ET.fromstring(r.text)
        ns = {'atom': 'http://www.w3.org/2005/Atom'}
        entries = root.findall('atom:entry', ns)
        results = []
        for entry in entries:
            title = entry.find('atom:title', ns).text.strip()
            summary = entry.find('atom:summary', ns).text.strip()
            link = None
            for l in entry.findall('atom:link', ns):
                if l.get('type') == 'text/html':
                    link = l.get('href')
                    break
            results.append((title, summary, link))
        return results
    return []

def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
    results = arxiv_search(q, max_results=5)
    if not results:
        st.write("No Arxiv results found.")
        return
    st.markdown(f"**Arxiv Search Results for '{q}':**")
    for i, (title, summary, link) in enumerate(results, start=1):
        st.markdown(f"**{i}. {title}**")
        st.write(summary)
        if link:
            st.markdown(f"[View Paper]({link})")

# -----------------------------------------
# File Manager
# -----------------------------------------
def show_file_manager():
    """Display file manager interface for uploading and browsing local files."""
    st.subheader("πŸ“‚ File Manager")
    col1, col2 = st.columns(2)
    with col1:
        uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
        if uploaded_file:
            with open(uploaded_file.name, "wb") as f:
                f.write(uploaded_file.getvalue())
            st.success(f"Uploaded: {uploaded_file.name}")
            st.session_state.should_rerun = True

    with col2:
        if st.button("πŸ—‘ Clear All Files"):
            for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
                os.remove(f)
            st.success("All files cleared!")
            st.session_state.should_rerun = True

    files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
    if files:
        st.write("### Existing Files")
        for f in files:
            with st.expander(f"πŸ“„ {os.path.basename(f)}"):
                if f.endswith('.mp3'):
                    st.audio(f)
                else:
                    with open(f, 'r', encoding='utf-8') as file:
                        st.text_area("Content", file.read(), height=100)
                if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
                    os.remove(f)
                    st.session_state.should_rerun = True

# -----------------------------------------
# Editor: Allow user to select a text file and edit it
# -----------------------------------------
def display_editor():
    # Let user pick a file from local directory to edit
    text_files = glob.glob("*.txt") + glob.glob("*.md")
    selected_file = st.selectbox("Select a file to edit:", ["None"] + text_files)
    if selected_file != "None":
        with open(selected_file, 'r', encoding='utf-8') as f:
            content = f.read()
        new_content = st.text_area("✏️ Edit Content:", value=content, height=300)
        if st.button("πŸ’Ύ Save"):
            with open(selected_file, 'w', encoding='utf-8') as f:
                f.write(new_content)
            st.success("File saved!")
            st.session_state.should_rerun = True

# -----------------------------------------
# Media (Images & Videos)
# -----------------------------------------
def show_media():
    st.header("πŸ“Έ Images & πŸŽ₯ Videos")
    tabs = st.tabs(["πŸ–Ό Images", "πŸŽ₯ Video"])
    with tabs[0]:
        imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
        if imgs:
            c = st.slider("Columns", 1, 5, 3)
            cols = st.columns(c)
            for i, f in enumerate(imgs):
                with cols[i % c]:
                    st.image(Image.open(f), use_column_width=True)
        else:
            st.write("No images found.")

    with tabs[1]:
        vids = glob.glob("*.mp4") + glob.glob("*.webm") + glob.glob("*.mov")
        if vids:
            for v in vids:
                with st.expander(f"πŸŽ₯ {os.path.basename(v)}"):
                    st.video(v)
        else:
            st.write("No videos found.")

# -----------------------------------------
# Video Search
# -----------------------------------------
def display_video_search():
    st.subheader("Search Videos")
    search_instance = VideoSearch()
    col1, col2 = st.columns([3, 1])
    with col1:
        query = st.text_input("Enter your search query:", value="ancient" if not st.session_state['initial_search_done'] else "")
    with col2:
        search_column = st.selectbox("Search in field:", ["All Fields"] + st.session_state['search_columns'])

    col3, col4 = st.columns(2)
    with col3:
        num_results = st.slider("Number of results:", 1, 100, 20)
    with col4:
        search_button = st.button("πŸ” Search")

    if (search_button or not st.session_state['initial_search_done']) and query is not None:
        st.session_state['initial_search_done'] = True
        selected_column = None if search_column == "All Fields" else search_column
        with st.spinner("Searching..."):
            results = search_instance.search(query, selected_column, num_results)

        st.session_state['search_history'].append({
            'query': query,
            'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            'results': results[:5]
        })

        for i, result in enumerate(results, 1):
            highlighted_desc = highlight_text(result['description'], query)
            with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i == 1)):
                cols = st.columns([2, 1])
                with cols[0]:
                    st.markdown("**Description:**")
                    st.write(highlighted_desc)
                    st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
                    st.markdown(f"**Views:** {result['views']:,}")

                with cols[1]:
                    st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
                    if result.get('youtube_id'):
                        st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")

# -----------------------------------------
# Main Application (Integrated)
# -----------------------------------------
def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research")
    # We remove the "🎀 Voice" option since voice input is removed
    tab_main = st.sidebar.radio("Action:", ["πŸ“Έ Media", "πŸ” ArXiv", "πŸ“ Editor"])

    # File manager in the sidebar
    with st.sidebar:
        st.subheader("βš™οΈ Settings & History")
        if st.button("πŸ—‘οΈ Clear History"):
            st.session_state['search_history'] = []
            st.experimental_rerun()

        st.markdown("### Recent Searches")
        for entry in reversed(st.session_state['search_history'][-5:]):
            with st.expander(f"{entry['timestamp']}: {entry['query']}"):
                for i, result in enumerate(entry['results'], 1):
                    st.write(f"{i}. {result['description'][:100]}...")

        st.markdown("### TTS Voice (unused)")
        st.selectbox("TTS Voice:", 
                     ["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
                     key="tts_voice")

    # Main content based on selection
    if tab_main == "πŸ“Έ Media":
        # Show media and video search combined
        show_media()
        st.write("---")
        display_video_search()

    elif tab_main == "πŸ” ArXiv":
        st.subheader("Arxiv Search")
        q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
        vocal_summary = st.checkbox("πŸŽ™ Short Audio Summary (Placeholder - no TTS actually)", value=True)
        titles_summary = st.checkbox("πŸ”– Titles Only", value=True)
        full_audio = st.checkbox("πŸ“š Full Audio Results (Placeholder)", value=False)

        if st.button("πŸ” Arxiv Search"):
            st.session_state['arxiv_last_query'] = q
            perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)

    elif tab_main == "πŸ“ Editor":
        show_file_manager()
        st.write("---")
        display_editor()

    # Rerun if needed
    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.experimental_rerun()

if __name__ == "__main__":
    main()