Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --- Combined Imports ------------------------------------
|
| 2 |
+
import io
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
import base64
|
| 6 |
+
import glob
|
| 7 |
+
import logging
|
| 8 |
+
import random
|
| 9 |
+
import shutil
|
| 10 |
+
import time
|
| 11 |
+
import zipfile
|
| 12 |
+
import json
|
| 13 |
+
import asyncio
|
| 14 |
+
import aiofiles
|
| 15 |
+
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
from collections import Counter
|
| 18 |
+
from dataclasses import dataclass, field
|
| 19 |
+
from io import BytesIO
|
| 20 |
+
from typing import Optional, List, Dict, Any
|
| 21 |
+
|
| 22 |
+
import pandas as pd
|
| 23 |
+
import pytz
|
| 24 |
+
import streamlit as st
|
| 25 |
+
from PIL import Image, ImageDraw, UnidentifiedImageError # Added ImageDraw and UnidentifiedImageError
|
| 26 |
+
from reportlab.pdfgen import canvas
|
| 27 |
+
from reportlab.lib.utils import ImageReader
|
| 28 |
+
from reportlab.lib.pagesizes import letter # Default page size
|
| 29 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PlatypusImage, PageBreak, Preformatted
|
| 30 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
| 31 |
+
from reportlab.lib.units import inch
|
| 32 |
+
from reportlab.lib.enums import TA_CENTER, TA_LEFT # For text alignment
|
| 33 |
+
import fitz # PyMuPDF
|
| 34 |
+
|
| 35 |
+
# --- Hugging Face Imports ---
|
| 36 |
+
from huggingface_hub import InferenceClient, HfApi, list_models
|
| 37 |
+
from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError # Import specific exceptions
|
| 38 |
+
|
| 39 |
+
# --- App Configuration -----------------------------------
|
| 40 |
+
st.set_page_config(
|
| 41 |
+
page_title="Vision & Layout Titans (HF) ππΌοΈ",
|
| 42 |
+
page_icon="π€",
|
| 43 |
+
layout="wide",
|
| 44 |
+
initial_sidebar_state="expanded",
|
| 45 |
+
menu_items={
|
| 46 |
+
'Get Help': 'https://huggingface.co/docs',
|
| 47 |
+
'Report a Bug': None, # Replace with your bug report link if desired
|
| 48 |
+
'About': "Combined App: PDF Layout Generator + Hugging Face Powered AI Tools π"
|
| 49 |
+
}
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Conditional imports for optional/heavy libraries
|
| 54 |
+
try:
|
| 55 |
+
import torch
|
| 56 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, AutoModelForImageToWaveform, pipeline
|
| 57 |
+
# Add more AutoModel classes as needed for different tasks (Vision, OCR, etc.)
|
| 58 |
+
_transformers_available = True
|
| 59 |
+
except ImportError:
|
| 60 |
+
_transformers_available = False
|
| 61 |
+
# Place warning inside main app area if sidebar isn't ready
|
| 62 |
+
# st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
from diffusers import StableDiffusionPipeline
|
| 66 |
+
_diffusers_available = True
|
| 67 |
+
except ImportError:
|
| 68 |
+
_diffusers_available = False
|
| 69 |
+
# Don't show warning if transformers also missing, handled above
|
| 70 |
+
# if _transformers_available:
|
| 71 |
+
# st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.")
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
import requests # Keep requests import
|
| 75 |
+
|
| 76 |
+
# --- Logging Setup ---------------------------------------
|
| 77 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 78 |
+
logger = logging.getLogger(__name__)
|
| 79 |
+
log_records = []
|
| 80 |
+
class LogCaptureHandler(logging.Handler):
|
| 81 |
+
def emit(self, record):
|
| 82 |
+
# Limit stored logs to avoid memory issues
|
| 83 |
+
if len(log_records) > 200:
|
| 84 |
+
log_records.pop(0)
|
| 85 |
+
log_records.append(record)
|
| 86 |
+
logger.addHandler(LogCaptureHandler())
|
| 87 |
+
|
| 88 |
+
# --- Environment Variables & Constants -------------------
|
| 89 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 90 |
+
DEFAULT_PROVIDER = "hf-inference"
|
| 91 |
+
# Model List (curated, similar to Gradio example) - can be updated
|
| 92 |
+
FEATURED_MODELS_LIST = [
|
| 93 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct", # Updated Llama model
|
| 94 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 95 |
+
"google/gemma-2-9b-it", # Added Gemma 2
|
| 96 |
+
"Qwen/Qwen2-7B-Instruct", # Added Qwen2
|
| 97 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 98 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
| 99 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", # Larger Mixture of Experts
|
| 100 |
+
# Add a smaller option
|
| 101 |
+
"HuggingFaceTB/SmolLM-1.7B-Instruct"
|
| 102 |
+
]
|
| 103 |
+
# Add common vision models if planning local loading
|
| 104 |
+
VISION_MODELS_LIST = [
|
| 105 |
+
"Salesforce/blip-image-captioning-large",
|
| 106 |
+
"microsoft/trocr-large-handwritten", # OCR model
|
| 107 |
+
"llava-hf/llava-1.5-7b-hf", # Vision Language Model
|
| 108 |
+
"google/vit-base-patch16-224", # Basic Vision Transformer
|
| 109 |
+
]
|
| 110 |
+
DIFFUSION_MODELS_LIST = [
|
| 111 |
+
"stabilityai/stable-diffusion-xl-base-1.0", # Common SDXL
|
| 112 |
+
"runwayml/stable-diffusion-v1-5", # Classic SD 1.5
|
| 113 |
+
"OFA-Sys/small-stable-diffusion-v0", # Tiny diffusion
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# --- Session State Initialization (Combined & Updated) ---
|
| 118 |
+
# Combined PDF Generator specific (replaces layout specific)
|
| 119 |
+
st.session_state.setdefault('combined_pdf_sources', []) # List of dicts {'filepath': path, 'type': type}
|
| 120 |
+
|
| 121 |
+
# General App State
|
| 122 |
+
st.session_state.setdefault('history', [])
|
| 123 |
+
st.session_state.setdefault('processing', {})
|
| 124 |
+
st.session_state.setdefault('asset_checkboxes', {})
|
| 125 |
+
st.session_state.setdefault('downloaded_pdfs', {})
|
| 126 |
+
st.session_state.setdefault('unique_counter', 0)
|
| 127 |
+
st.session_state.setdefault('cam0_file', None)
|
| 128 |
+
st.session_state.setdefault('cam1_file', None)
|
| 129 |
+
st.session_state.setdefault('characters', [])
|
| 130 |
+
st.session_state.setdefault('char_form_reset_key', 0) # For character form reset
|
| 131 |
+
# Removed gallery_size state - no longer used
|
| 132 |
+
# st.session_state.setdefault('gallery_size', 10)
|
| 133 |
+
|
| 134 |
+
# --- Hugging Face & Local Model State ---
|
| 135 |
+
st.session_state.setdefault('hf_inference_client', None) # Store initialized client
|
| 136 |
+
st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER)
|
| 137 |
+
st.session_state.setdefault('hf_custom_key', "")
|
| 138 |
+
st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) # Default API model
|
| 139 |
+
st.session_state.setdefault('hf_custom_api_model', "") # User override for API model
|
| 140 |
+
|
| 141 |
+
# Local Model Management
|
| 142 |
+
st.session_state.setdefault('local_models', {}) # Dict to store loaded models: {'path': {'model': obj, 'tokenizer/proc': obj, 'type': 'causal/vision/etc'}}
|
| 143 |
+
st.session_state.setdefault('selected_local_model_path', None) # Path of the currently active local model
|
| 144 |
+
|
| 145 |
+
# Inference Parameters (shared for API and local where applicable)
|
| 146 |
+
st.session_state.setdefault('gen_max_tokens', 512)
|
| 147 |
+
st.session_state.setdefault('gen_temperature', 0.7)
|
| 148 |
+
st.session_state.setdefault('gen_top_p', 0.95)
|
| 149 |
+
st.session_state.setdefault('gen_frequency_penalty', 0.0) # Corresponds to repetition_penalty=1.0
|
| 150 |
+
st.session_state.setdefault('gen_seed', -1) # -1 for random
|
| 151 |
+
|
| 152 |
+
# Removed asset_gallery_container - render directly in sidebar
|
| 153 |
+
# if 'asset_gallery_container' not in st.session_state:
|
| 154 |
+
# st.session_state['asset_gallery_container'] = st.sidebar.empty()
|
| 155 |
+
|
| 156 |
+
# --- Dataclasses (Refined for Local Models) -------------
|
| 157 |
+
@dataclass
|
| 158 |
+
class LocalModelConfig:
|
| 159 |
+
name: str # User-defined local name
|
| 160 |
+
hf_id: str # Hugging Face model ID used for download
|
| 161 |
+
model_type: str # 'causal', 'vision', 'diffusion', 'ocr', etc.
|
| 162 |
+
size_category: str = "unknown" # e.g., 'small', 'medium', 'large'
|
| 163 |
+
domain: Optional[str] = None
|
| 164 |
+
local_path: str = field(init=False) # Path where it's saved
|
| 165 |
+
|
| 166 |
+
def __post_init__(self):
|
| 167 |
+
# Define local path based on type and name
|
| 168 |
+
type_folder = f"{self.model_type}_models"
|
| 169 |
+
safe_name = re.sub(r'[^\w\-]+', '_', self.name) # Sanitize name for path
|
| 170 |
+
self.local_path = os.path.join(type_folder, safe_name)
|
| 171 |
+
|
| 172 |
+
def get_full_path(self):
|
| 173 |
+
return os.path.abspath(self.local_path)
|
| 174 |
+
|
| 175 |
+
# (Keep DiffusionConfig if still using diffusers library separately)
|
| 176 |
+
@dataclass
|
| 177 |
+
class DiffusionConfig: # Kept for clarity in diffusion tab if needed
|
| 178 |
+
name: str
|
| 179 |
+
base_model: str
|
| 180 |
+
size: str
|
| 181 |
+
domain: Optional[str] = None
|
| 182 |
+
@property
|
| 183 |
+
def model_path(self):
|
| 184 |
+
# Ensure diffusion models are saved in their own distinct top-level folder
|
| 185 |
+
return f"diffusion_models/{re.sub(r'[^w-]+', '_', self.name)}"
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# --- Helper Functions (Combined and refined) -------------
|
| 189 |
+
def generate_filename(sequence, ext="png"):
|
| 190 |
+
timestamp = time.strftime('%Y%m%d_%H%M%S')
|
| 191 |
+
safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence))
|
| 192 |
+
return f"{safe_sequence}_{timestamp}.{ext}"
|
| 193 |
+
|
| 194 |
+
def pdf_url_to_filename(url):
|
| 195 |
+
name = re.sub(r'^https?://', '', url)
|
| 196 |
+
name = re.sub(r'[<>:"/\\|?*]', '_', name)
|
| 197 |
+
return name[:100] + ".pdf" # Limit length
|
| 198 |
+
|
| 199 |
+
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
|
| 200 |
+
if not os.path.exists(file_path): return f"{label} (File not found)"
|
| 201 |
+
try:
|
| 202 |
+
with open(file_path, "rb") as f: file_bytes = f.read()
|
| 203 |
+
b64 = base64.b64encode(file_bytes).decode()
|
| 204 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
|
| 205 |
+
except Exception as e:
|
| 206 |
+
logger.error(f"Error creating download link for {file_path}: {e}")
|
| 207 |
+
return f"{label} (Error)"
|
| 208 |
+
|
| 209 |
+
def zip_directory(directory_path, zip_path):
|
| 210 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 211 |
+
for root, _, files in os.walk(directory_path):
|
| 212 |
+
for file in files:
|
| 213 |
+
file_path = os.path.join(root, file)
|
| 214 |
+
zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path)))
|
| 215 |
+
|
| 216 |
+
def get_local_model_paths(model_type="causal"):
|
| 217 |
+
"""Gets paths of locally saved models of a specific type."""
|
| 218 |
+
pattern = f"{model_type}_models/*"
|
| 219 |
+
dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)]
|
| 220 |
+
return dirs
|
| 221 |
+
|
| 222 |
+
def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")):
|
| 223 |
+
"""Gets all files with specified extensions in the current directory."""
|
| 224 |
+
all_files = set()
|
| 225 |
+
for ext in file_types:
|
| 226 |
+
# Ensure the glob pattern correctly targets files in the script's directory
|
| 227 |
+
all_files.update(glob.glob(f"./*.{ext.lower()}")) # Use ./* for current dir
|
| 228 |
+
all_files.update(glob.glob(f"./*.{ext.upper()}"))
|
| 229 |
+
# Convert to list and remove potential './' prefix for cleaner display
|
| 230 |
+
return sorted([os.path.normpath(f) for f in all_files])
|
| 231 |
+
|
| 232 |
+
def get_pdf_files():
|
| 233 |
+
# Use get_gallery_files to find PDFs
|
| 234 |
+
return get_gallery_files(['pdf'])
|
| 235 |
+
|
| 236 |
+
def download_pdf(url, output_path):
|
| 237 |
+
try:
|
| 238 |
+
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 239 |
+
response = requests.get(url, stream=True, timeout=20, headers=headers)
|
| 240 |
+
response.raise_for_status()
|
| 241 |
+
with open(output_path, "wb") as f:
|
| 242 |
+
for chunk in response.iter_content(chunk_size=8192): f.write(chunk)
|
| 243 |
+
logger.info(f"Successfully downloaded {url} to {output_path}")
|
| 244 |
+
return True
|
| 245 |
+
except requests.exceptions.RequestException as e:
|
| 246 |
+
logger.error(f"Failed to download {url}: {e}")
|
| 247 |
+
if os.path.exists(output_path):
|
| 248 |
+
try:
|
| 249 |
+
os.remove(output_path)
|
| 250 |
+
logger.info(f"Removed partially downloaded file: {output_path}")
|
| 251 |
+
except OSError as remove_error:
|
| 252 |
+
logger.error(f"Error removing partial file {output_path}: {remove_error}")
|
| 253 |
+
except Exception as general_remove_error:
|
| 254 |
+
logger.error(f"General error removing partial file {output_path}: {general_remove_error}")
|
| 255 |
+
return False
|
| 256 |
+
except Exception as e:
|
| 257 |
+
logger.error(f"An unexpected error occurred during download of {url}: {e}")
|
| 258 |
+
if os.path.exists(output_path):
|
| 259 |
+
try:
|
| 260 |
+
os.remove(output_path)
|
| 261 |
+
logger.info(f"Removed file after unexpected error: {output_path}")
|
| 262 |
+
except OSError as remove_error:
|
| 263 |
+
logger.error(f"Error removing file after unexpected error {output_path}: {remove_error}")
|
| 264 |
+
except Exception as general_remove_error:
|
| 265 |
+
logger.error(f"General error removing file after unexpected error {output_path}: {general_remove_error}")
|
| 266 |
+
return False
|
| 267 |
+
|
| 268 |
+
async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0):
|
| 269 |
+
start_time = time.time()
|
| 270 |
+
# Use a placeholder within the main app area for status during async operations
|
| 271 |
+
status_placeholder = st.empty()
|
| 272 |
+
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)")
|
| 273 |
+
output_files = []
|
| 274 |
+
try:
|
| 275 |
+
doc = fitz.open(pdf_path)
|
| 276 |
+
matrix = fitz.Matrix(resolution_factor, resolution_factor)
|
| 277 |
+
num_pages_to_process = 0
|
| 278 |
+
if mode == "single": num_pages_to_process = min(1, len(doc))
|
| 279 |
+
elif mode == "twopage": num_pages_to_process = min(2, len(doc))
|
| 280 |
+
elif mode == "allpages": num_pages_to_process = len(doc)
|
| 281 |
+
|
| 282 |
+
for i in range(num_pages_to_process):
|
| 283 |
+
page_start_time = time.time()
|
| 284 |
+
page = doc.load_page(i) # Use load_page for efficiency
|
| 285 |
+
pix = page.get_pixmap(matrix=matrix)
|
| 286 |
+
base_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 287 |
+
output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png")
|
| 288 |
+
|
| 289 |
+
# Ensure output path is valid before saving
|
| 290 |
+
output_dir = os.path.dirname(output_file) or "."
|
| 291 |
+
if not os.path.exists(output_dir): os.makedirs(output_dir)
|
| 292 |
+
|
| 293 |
+
await asyncio.to_thread(pix.save, output_file)
|
| 294 |
+
output_files.append(output_file)
|
| 295 |
+
elapsed_page = int(time.time() - page_start_time)
|
| 296 |
+
status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)")
|
| 297 |
+
await asyncio.sleep(0.01)
|
| 298 |
+
|
| 299 |
+
doc.close()
|
| 300 |
+
elapsed = int(time.time() - start_time)
|
| 301 |
+
status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!")
|
| 302 |
+
return output_files
|
| 303 |
+
except Exception as e:
|
| 304 |
+
logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}", exc_info=True) # Add traceback
|
| 305 |
+
status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}")
|
| 306 |
+
# Clean up any files created before the error
|
| 307 |
+
for f in output_files:
|
| 308 |
+
if os.path.exists(f):
|
| 309 |
+
try: os.remove(f)
|
| 310 |
+
except: pass
|
| 311 |
+
return []
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
# --- HF Inference Client Management ---
|
| 315 |
+
def get_hf_client() -> Optional[InferenceClient]:
|
| 316 |
+
"""Gets or initializes the Hugging Face Inference Client based on session state."""
|
| 317 |
+
provider = st.session_state.hf_provider
|
| 318 |
+
custom_key = st.session_state.hf_custom_key.strip()
|
| 319 |
+
token_to_use = custom_key if custom_key else HF_TOKEN
|
| 320 |
+
|
| 321 |
+
if not token_to_use and provider != "hf-inference":
|
| 322 |
+
# Don't show error here, let caller handle it if client is needed
|
| 323 |
+
# st.error(f"Provider '{provider}' requires a Hugging Face API token...")
|
| 324 |
+
return None
|
| 325 |
+
if provider == "hf-inference" and not token_to_use:
|
| 326 |
+
logger.warning("Using hf-inference provider without a token. Rate limits may apply.")
|
| 327 |
+
token_to_use = None # Explicitly set to None for public inference API
|
| 328 |
+
|
| 329 |
+
# Check if client needs re-initialization
|
| 330 |
+
current_client = st.session_state.get('hf_inference_client')
|
| 331 |
+
needs_reinit = True
|
| 332 |
+
if current_client:
|
| 333 |
+
# Compare provider and token status more carefully
|
| 334 |
+
current_token = getattr(current_client, '_token', None) # Access internal token if exists
|
| 335 |
+
current_provider = getattr(current_client, 'provider', None) # Access provider if exists
|
| 336 |
+
|
| 337 |
+
token_matches = (token_to_use == current_token)
|
| 338 |
+
provider_matches = (provider == current_provider)
|
| 339 |
+
|
| 340 |
+
if token_matches and provider_matches:
|
| 341 |
+
needs_reinit = False
|
| 342 |
+
|
| 343 |
+
if needs_reinit:
|
| 344 |
+
try:
|
| 345 |
+
logger.info(f"Initializing InferenceClient for provider: {provider}. Token source: {'Custom Key' if custom_key else ('HF_TOKEN' if HF_TOKEN else 'None')}")
|
| 346 |
+
st.session_state.hf_inference_client = InferenceClient(model=None, token=token_to_use, provider=provider) # Init without model initially
|
| 347 |
+
# Store provider on client instance if possible (check InferenceClient structure or assume it's handled internally)
|
| 348 |
+
setattr(st.session_state.hf_inference_client, 'provider', provider) # Explicitly store provider for re-init check
|
| 349 |
+
setattr(st.session_state.hf_inference_client, '_token', token_to_use) # Explicitly store token for re-init check
|
| 350 |
+
logger.info("InferenceClient initialized successfully.")
|
| 351 |
+
except Exception as e:
|
| 352 |
+
st.error(f"Failed to initialize Hugging Face client for provider {provider}: {e}")
|
| 353 |
+
logger.error(f"InferenceClient initialization failed: {e}")
|
| 354 |
+
st.session_state.hf_inference_client = None
|
| 355 |
+
|
| 356 |
+
return st.session_state.hf_inference_client
|
| 357 |
+
|
| 358 |
+
# --- HF/Local Model Processing Functions ---
|
| 359 |
+
def process_text_hf(text: str, prompt: str, use_api: bool) -> str:
|
| 360 |
+
"""Processes text using either HF Inference API or a loaded local model."""
|
| 361 |
+
status_placeholder = st.empty()
|
| 362 |
+
start_time = time.time()
|
| 363 |
+
result_text = ""
|
| 364 |
+
|
| 365 |
+
params = {
|
| 366 |
+
"max_new_tokens": st.session_state.gen_max_tokens,
|
| 367 |
+
"temperature": st.session_state.gen_temperature,
|
| 368 |
+
"top_p": st.session_state.gen_top_p,
|
| 369 |
+
"repetition_penalty": st.session_state.gen_frequency_penalty, # Keep user value, adjust name below if needed
|
| 370 |
+
}
|
| 371 |
+
seed = st.session_state.gen_seed
|
| 372 |
+
if seed != -1: params["seed"] = seed
|
| 373 |
+
|
| 374 |
+
system_prompt = "You are a helpful assistant. Process the following text based on the user's request."
|
| 375 |
+
full_prompt = f"{prompt}\n\n---\n\n{text}"
|
| 376 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": full_prompt}]
|
| 377 |
+
|
| 378 |
+
if use_api:
|
| 379 |
+
status_placeholder.info("Processing text using Hugging Face API...")
|
| 380 |
+
client = get_hf_client()
|
| 381 |
+
if not client: return "Error: Hugging Face client not configured/available."
|
| 382 |
+
model_id = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
|
| 383 |
+
if not model_id: return "Error: No Hugging Face API model specified."
|
| 384 |
+
status_placeholder.info(f"Using API Model: {model_id}")
|
| 385 |
+
try:
|
| 386 |
+
# Ensure repetition_penalty is passed correctly if supported
|
| 387 |
+
api_params = {
|
| 388 |
+
"max_tokens": params['max_new_tokens'],
|
| 389 |
+
"temperature": params['temperature'],
|
| 390 |
+
"top_p": params['top_p'],
|
| 391 |
+
"repetition_penalty": params.get('repetition_penalty') # Check if API uses this name
|
| 392 |
+
}
|
| 393 |
+
if 'seed' in params: api_params['seed'] = params['seed']
|
| 394 |
+
|
| 395 |
+
response = client.chat_completion(model=model_id, messages=messages, **api_params)
|
| 396 |
+
result_text = response.choices[0].message.content or ""
|
| 397 |
+
logger.info(f"HF API text processing successful for model {model_id}.")
|
| 398 |
+
except Exception as e:
|
| 399 |
+
logger.error(f"HF API text processing failed for model {model_id}: {e}", exc_info=True)
|
| 400 |
+
result_text = f"Error during Hugging Face API inference: {str(e)}"
|
| 401 |
+
else:
|
| 402 |
+
status_placeholder.info("Processing text using local model...")
|
| 403 |
+
if not _transformers_available: return "Error: Transformers library not available."
|
| 404 |
+
model_path = st.session_state.get('selected_local_model_path')
|
| 405 |
+
if not model_path or model_path not in st.session_state.get('local_models', {}): return "Error: No suitable local model selected/loaded."
|
| 406 |
+
local_model_data = st.session_state['local_models'][model_path]
|
| 407 |
+
if local_model_data.get('type') != 'causal': return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM."
|
| 408 |
+
status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}")
|
| 409 |
+
model = local_model_data.get('model')
|
| 410 |
+
tokenizer = local_model_data.get('tokenizer')
|
| 411 |
+
if not model or not tokenizer: return f"Error: Model/tokenizer not found for {os.path.basename(model_path)}."
|
| 412 |
+
try:
|
| 413 |
+
try: prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 414 |
+
except: logger.warning(f"Chat template failed for {model_path}. Using basic format."); prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:"
|
| 415 |
+
inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=2048).to(model.device) # Increased context slightly
|
| 416 |
+
generate_params = {
|
| 417 |
+
"max_new_tokens": params['max_new_tokens'],
|
| 418 |
+
"temperature": params['temperature'],
|
| 419 |
+
"top_p": params['top_p'],
|
| 420 |
+
"repetition_penalty": params.get('repetition_penalty', 1.0),
|
| 421 |
+
"do_sample": True if params['temperature'] > 0.01 else False, # Sample if temp > 0.01
|
| 422 |
+
"pad_token_id": tokenizer.eos_token_id
|
| 423 |
+
}
|
| 424 |
+
with torch.no_grad(): outputs = model.generate(**inputs, **generate_params)
|
| 425 |
+
input_length = inputs['input_ids'].shape[1]; generated_ids = outputs[0][input_length:]
|
| 426 |
+
result_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 427 |
+
logger.info(f"Local text processing successful for model {model_path}.")
|
| 428 |
+
except Exception as e:
|
| 429 |
+
logger.error(f"Local text processing failed for model {model_path}: {e}", exc_info=True)
|
| 430 |
+
result_text = f"Error during local model inference: {str(e)}"
|
| 431 |
+
|
| 432 |
+
elapsed = int(time.time() - start_time)
|
| 433 |
+
status_placeholder.success(f"Text processing completed in {elapsed}s.")
|
| 434 |
+
return result_text
|
| 435 |
+
|
| 436 |
+
def process_image_hf(image: Image.Image, prompt: str, use_api: bool) -> str:
|
| 437 |
+
"""Processes an image using either HF Inference API or a local model."""
|
| 438 |
+
status_placeholder = st.empty()
|
| 439 |
+
start_time = time.time()
|
| 440 |
+
result_text = "[Image processing requires specific Vision model implementation]"
|
| 441 |
+
|
| 442 |
+
if use_api:
|
| 443 |
+
status_placeholder.info("Processing image using Hugging Face API (Image-to-Text)...")
|
| 444 |
+
client = get_hf_client()
|
| 445 |
+
if not client: return "Error: HF client not configured."
|
| 446 |
+
buffered = BytesIO(); image.save(buffered, format="PNG"); img_bytes = buffered.getvalue()
|
| 447 |
+
try:
|
| 448 |
+
captioning_model_id = "Salesforce/blip-image-captioning-large" # Default captioner
|
| 449 |
+
vqa_model_id = "llava-hf/llava-1.5-7b-hf" # Default VQA - MAY REQUIRE DIFFERENT CLIENT CALL
|
| 450 |
+
# Decide whether to use captioning or VQA based on prompt? Simple approach: captioning.
|
| 451 |
+
status_placeholder.info(f"Using API Image-to-Text Model: {captioning_model_id}")
|
| 452 |
+
response_list = client.image_to_text(data=img_bytes, model=captioning_model_id)
|
| 453 |
+
if response_list and 'generated_text' in response_list[0]:
|
| 454 |
+
result_text = f"API Caption: {response_list[0]['generated_text']}\n(Prompt '{prompt}' likely ignored by this API endpoint)"
|
| 455 |
+
logger.info(f"HF API image captioning successful for model {captioning_model_id}.")
|
| 456 |
+
else: result_text = "Error: Unexpected response format from image-to-text API."; logger.warning(f"Unexpected API response: {response_list}")
|
| 457 |
+
except Exception as e: logger.error(f"HF API image processing failed: {e}"); result_text = f"Error during HF API image inference: {str(e)}"
|
| 458 |
+
else:
|
| 459 |
+
status_placeholder.info("Processing image using local model...")
|
| 460 |
+
if not _transformers_available: return "Error: Transformers library needed."
|
| 461 |
+
model_path = st.session_state.get('selected_local_model_path')
|
| 462 |
+
if not model_path or model_path not in st.session_state.get('local_models', {}): return "Error: No suitable local model selected/loaded."
|
| 463 |
+
local_model_data = st.session_state['local_models'][model_path]
|
| 464 |
+
model_type = local_model_data.get('type')
|
| 465 |
+
if model_type not in ['vision', 'ocr']: return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Vision/OCR type."
|
| 466 |
+
status_placeholder.warning(f"Local {model_type} Model ({os.path.basename(model_path)}): Processing logic depends on specific model. Placeholder active.")
|
| 467 |
+
# --- ADD SPECIFIC LOCAL VISION/OCR MODEL LOGIC HERE ---
|
| 468 |
+
# This section needs code tailored to the loaded model's processor/generate methods
|
| 469 |
+
# Example placeholder:
|
| 470 |
+
processor = local_model_data.get('processor')
|
| 471 |
+
model = local_model_data.get('model')
|
| 472 |
+
if processor and model:
|
| 473 |
+
result_text = f"[Local {model_type} model processing needs implementation for {os.path.basename(model_path)}. Prompt: '{prompt}']"
|
| 474 |
+
else:
|
| 475 |
+
result_text = f"Error: Missing model or processor for local {model_type} model {os.path.basename(model_path)}."
|
| 476 |
+
# --- END OF PLACEHOLDER ---
|
| 477 |
+
|
| 478 |
+
elapsed = int(time.time() - start_time)
|
| 479 |
+
status_placeholder.success(f"Image processing attempt completed in {elapsed}s.")
|
| 480 |
+
return result_text
|
| 481 |
+
|
| 482 |
+
async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool) -> str:
|
| 483 |
+
""" Performs OCR using the process_image_hf function framework. """
|
| 484 |
+
ocr_prompt = "Perform OCR on this image. Extract all text content." # More specific prompt
|
| 485 |
+
result = process_image_hf(image, ocr_prompt, use_api=use_api) # Pass use_api flag
|
| 486 |
+
if result and not result.startswith("Error") and not result.startswith("["):
|
| 487 |
+
try:
|
| 488 |
+
async with aiofiles.open(output_file, "w", encoding='utf-8') as f: await f.write(result)
|
| 489 |
+
logger.info(f"HF OCR result saved to {output_file}")
|
| 490 |
+
except IOError as e: logger.error(f"Failed to save HF OCR output to {output_file}: {e}"); result += f"\n[Error saving file: {e}]"
|
| 491 |
+
elif os.path.exists(output_file): try: os.remove(output_file) except OSError: pass
|
| 492 |
+
return result
|
| 493 |
+
|
| 494 |
+
# --- Character Functions (Keep from previous) -----------
|
| 495 |
+
def randomize_character_content():
|
| 496 |
+
intro_templates = ["{char} is a valiant knight...", "{char} is a mischievous thief...", "{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..."]
|
| 497 |
+
greeting_templates = ["'I am from the knight's guild...'", "'I heard you needed helpβnameβs {char}...", "'Oh, hello! Iβm {char}, didnβt see you there...'", "'Iβm {char}, and Iβm here to fight...'", "'Iβm {char}, here to heal...'"]
|
| 498 |
+
name = f"Character_{random.randint(1000, 9999)}"; gender = random.choice(["Male", "Female"]); intro = random.choice(intro_templates).format(char=name); greeting = random.choice(greeting_templates).format(char=name)
|
| 499 |
+
return name, gender, intro, greeting
|
| 500 |
+
|
| 501 |
+
def save_character(character_data):
|
| 502 |
+
characters = st.session_state.get('characters', []);
|
| 503 |
+
if any(c['name'] == character_data['name'] for c in characters): st.error(f"Character name '{character_data['name']}' already exists."); return False
|
| 504 |
+
characters.append(character_data); st.session_state['characters'] = characters
|
| 505 |
+
try:
|
| 506 |
+
with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2); logger.info(f"Saved character: {character_data['name']}"); return True
|
| 507 |
+
except IOError as e: logger.error(f"Failed to save characters.json: {e}"); st.error(f"Failed to save character file: {e}"); return False
|
| 508 |
+
|
| 509 |
+
def load_characters():
|
| 510 |
+
if not os.path.exists("characters.json"): st.session_state['characters'] = []; return
|
| 511 |
+
try:
|
| 512 |
+
with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f)
|
| 513 |
+
if isinstance(characters, list): st.session_state['characters'] = characters; logger.info(f"Loaded {len(characters)} characters.")
|
| 514 |
+
else: st.session_state['characters'] = []; logger.warning("characters.json is not a list, resetting."); os.remove("characters.json")
|
| 515 |
+
except (json.JSONDecodeError, IOError) as e:
|
| 516 |
+
logger.error(f"Failed to load or decode characters.json: {e}"); st.error(f"Error loading character file: {e}. Starting fresh."); st.session_state['characters'] = []
|
| 517 |
+
try: corrupt_filename = f"characters_corrupt_{int(time.time())}.json"; shutil.copy("characters.json", corrupt_filename); logger.info(f"Backed up corrupted character file to {corrupt_filename}"); os.remove("characters.json")
|
| 518 |
+
except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}")
|
| 519 |
+
|
| 520 |
+
# --- Utility: Clean stems (Keep from previous) ----------
|
| 521 |
+
def clean_stem(fn: str) -> str:
|
| 522 |
+
name = os.path.splitext(os.path.basename(fn))[0]; name = name.replace('-', ' ').replace('_', ' ')
|
| 523 |
+
return name.strip().title()
|
| 524 |
+
|
| 525 |
+
# --- PDF Creation Functions ---
|
| 526 |
+
# Original image-only PDF function (might be removed or kept as an option)
|
| 527 |
+
def make_image_sized_pdf(sources):
|
| 528 |
+
# ... (kept same as previous version for now) ...
|
| 529 |
+
if not sources: st.warning("No image sources provided for PDF generation."); return None
|
| 530 |
+
buf = io.BytesIO(); c = canvas.Canvas(buf, pagesize=letter)
|
| 531 |
+
try:
|
| 532 |
+
for idx, src in enumerate(sources, start=1):
|
| 533 |
+
status_placeholder = st.empty(); status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...")
|
| 534 |
+
try:
|
| 535 |
+
filename = f'page_{idx}'
|
| 536 |
+
if isinstance(src, str):
|
| 537 |
+
if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping."); status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}"); continue
|
| 538 |
+
img_obj = Image.open(src); filename = os.path.basename(src)
|
| 539 |
+
elif hasattr(src, 'name'): # Handle uploaded file object
|
| 540 |
+
src.seek(0); img_obj = Image.open(src); filename = getattr(src, 'name', f'uploaded_image_{idx}'); src.seek(0)
|
| 541 |
+
else: continue # Skip unknown source type
|
| 542 |
+
with img_obj:
|
| 543 |
+
iw, ih = img_obj.size
|
| 544 |
+
if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping."); status_placeholder.warning(f"Skipping invalid image: {filename}"); continue
|
| 545 |
+
cap_h = 30; pw, ph = iw, ih + cap_h; c.setPageSize((pw, ph)); img_reader = ImageReader(img_obj)
|
| 546 |
+
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
|
| 547 |
+
caption = clean_stem(filename); c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, caption)
|
| 548 |
+
c.setFont('Helvetica', 8); c.setFillColorRGB(0.5, 0.5, 0.5); c.drawRightString(pw - 10, 8, f"Page {idx}")
|
| 549 |
+
c.showPage(); status_placeholder.success(f"Added page {idx}/{len(sources)}: {filename}")
|
| 550 |
+
except (IOError, OSError, UnidentifiedImageError) as img_err: logger.error(f"Error processing image {src}: {img_err}"); status_placeholder.error(f"Error adding page {idx}: {img_err}")
|
| 551 |
+
except Exception as e: logger.error(f"Unexpected error adding page {idx} ({src}): {e}"); status_placeholder.error(f"Unexpected error on page {idx}: {e}")
|
| 552 |
+
c.save(); buf.seek(0)
|
| 553 |
+
if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file."); return None
|
| 554 |
+
return buf.getvalue()
|
| 555 |
+
except Exception as e: logger.error(f"Fatal error during PDF generation: {e}"); st.error(f"PDF Generation Failed: {e}"); return None
|
| 556 |
+
|
| 557 |
+
# --- NEW Combined PDF Generation Function ---
|
| 558 |
+
def make_combined_pdf(ordered_sources_info: List[Dict]) -> Optional[bytes]:
|
| 559 |
+
if not ordered_sources_info:
|
| 560 |
+
st.warning("No items selected for combined PDF generation.")
|
| 561 |
+
return None
|
| 562 |
+
|
| 563 |
+
buf = io.BytesIO()
|
| 564 |
+
c = canvas.Canvas(buf, pagesize=letter)
|
| 565 |
+
styles = getSampleStyleSheet()
|
| 566 |
+
total_pages_generated = 0
|
| 567 |
+
|
| 568 |
+
# Add page number function
|
| 569 |
+
def draw_page_number(canvas, page_num, page_width, page_height):
|
| 570 |
+
canvas.saveState()
|
| 571 |
+
canvas.setFont('Helvetica', 8)
|
| 572 |
+
canvas.setFillColorRGB(0.5, 0.5, 0.5)
|
| 573 |
+
canvas.drawRightString(page_width - inch/2, inch/2, f"Page {page_num}")
|
| 574 |
+
canvas.restoreState()
|
| 575 |
+
|
| 576 |
+
for idx, item_info in enumerate(ordered_sources_info):
|
| 577 |
+
filepath = item_info.get('filepath')
|
| 578 |
+
file_type = item_info.get('type')
|
| 579 |
+
filename = item_info.get('filename', f"item_{idx+1}")
|
| 580 |
+
item_caption = clean_stem(filename)
|
| 581 |
+
|
| 582 |
+
if not filepath: logger.warning(f"Skipping item {idx+1} due to missing filepath."); continue
|
| 583 |
+
is_file_object = not isinstance(filepath, str)
|
| 584 |
+
status_placeholder = st.empty()
|
| 585 |
+
status_placeholder.info(f"Processing item {idx+1}/{len(ordered_sources_info)}: {filename} ({file_type})...")
|
| 586 |
+
|
| 587 |
+
try:
|
| 588 |
+
# --- IMAGE Processing ---
|
| 589 |
+
if file_type == 'Image':
|
| 590 |
+
if is_file_object: filepath.seek(0)
|
| 591 |
+
try:
|
| 592 |
+
img_obj = Image.open(filepath)
|
| 593 |
+
with img_obj:
|
| 594 |
+
iw, ih = img_obj.size
|
| 595 |
+
if iw <= 0 or ih <= 0: raise ValueError("Invalid image dimensions")
|
| 596 |
+
cap_h = 30; pw, ph = iw, ih + cap_h
|
| 597 |
+
c.setPageSize((pw, ph)); img_reader = ImageReader(img_obj)
|
| 598 |
+
c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto')
|
| 599 |
+
c.setFont('Helvetica', 12); c.setFillColorRGB(0, 0, 0); c.drawCentredString(pw / 2, cap_h / 2 + 3, item_caption)
|
| 600 |
+
total_pages_generated += 1; draw_page_number(c, total_pages_generated, pw, ph)
|
| 601 |
+
c.showPage()
|
| 602 |
+
finally:
|
| 603 |
+
if is_file_object: filepath.seek(0)
|
| 604 |
+
|
| 605 |
+
# --- PDF Processing ---
|
| 606 |
+
elif file_type == 'PDF':
|
| 607 |
+
src_doc = None
|
| 608 |
+
try:
|
| 609 |
+
if is_file_object: filepath.seek(0); pdf_bytes = filepath.read(); src_doc = fitz.open("pdf", pdf_bytes)
|
| 610 |
+
else: src_doc = fitz.open(filepath)
|
| 611 |
+
if len(src_doc) == 0: st.warning(f"Skipping empty PDF: {filename}"); continue
|
| 612 |
+
for i, page in enumerate(src_doc):
|
| 613 |
+
page_rect = page.rect; pw, ph = page_rect.width, page_rect.height
|
| 614 |
+
if pw <= 0 or ph <= 0: continue
|
| 615 |
+
c.setPageSize((pw, ph))
|
| 616 |
+
pix = page.get_pixmap(dpi=150) # Render as image
|
| 617 |
+
if pix.width > 0 and pix.height > 0:
|
| 618 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); img_reader = ImageReader(img)
|
| 619 |
+
c.drawImage(img_reader, 0, 0, width=pw, height=ph)
|
| 620 |
+
else: c.setFont('Helvetica', 10); c.setFillColorRGB(1,0,0); c.drawCentredString(pw/2, ph/2, f"Failed to render page {i+1} preview")
|
| 621 |
+
overlay_text = f"{item_caption} (p{i+1})"; c.setFont('Helvetica', 8); c.setFillColorRGB(0, 0, 0, alpha=0.6); c.drawString(10, 10, overlay_text)
|
| 622 |
+
total_pages_generated += 1; draw_page_number(c, total_pages_generated, pw, ph)
|
| 623 |
+
c.showPage()
|
| 624 |
+
finally:
|
| 625 |
+
if src_doc: src_doc.close()
|
| 626 |
+
if is_file_object: filepath.seek(0)
|
| 627 |
+
|
| 628 |
+
# --- TEXT/MARKDOWN Processing ---
|
| 629 |
+
elif file_type == 'Text':
|
| 630 |
+
if is_file_object:
|
| 631 |
+
filepath.seek(0)
|
| 632 |
+
try: text_content = filepath.read().decode('utf-8')
|
| 633 |
+
except: text_content = filepath.read().decode('latin-1', errors='replace')
|
| 634 |
+
else:
|
| 635 |
+
with open(filepath, 'r', encoding='utf-8', errors='ignore') as f: text_content = f.read()
|
| 636 |
+
|
| 637 |
+
temp_buf = io.BytesIO()
|
| 638 |
+
temp_doc = SimpleDocTemplate(temp_buf, pagesize=letter, leftMargin=inch, rightMargin=inch, topMargin=inch, bottomMargin=inch)
|
| 639 |
+
story = [Paragraph(f"Content from: {item_caption}", styles['h2']), Spacer(1, 0.2*inch)]
|
| 640 |
+
# Use Preformatted for simple text dump
|
| 641 |
+
story.append(Preformatted(text_content, styles['Code']))
|
| 642 |
+
temp_doc.build(story)
|
| 643 |
+
temp_buf.seek(0)
|
| 644 |
+
|
| 645 |
+
text_pdf = fitz.open("pdf", temp_buf.read())
|
| 646 |
+
for i, page in enumerate(text_pdf):
|
| 647 |
+
page_rect = page.rect; pw, ph = page_rect.width, page_rect.height
|
| 648 |
+
c.setPageSize((pw, ph)); pix = page.get_pixmap(dpi=150)
|
| 649 |
+
if pix.width > 0 and pix.height > 0:
|
| 650 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); img_reader = ImageReader(img)
|
| 651 |
+
c.drawImage(img_reader, 0, 0, width=pw, height=ph)
|
| 652 |
+
else: c.setFont('Helvetica', 10); c.setFillColorRGB(1,0,0); c.drawCentredString(pw/2, ph/2, f"Failed to render text page {i+1}")
|
| 653 |
+
total_pages_generated += 1; draw_page_number(c, total_pages_generated, pw, ph)
|
| 654 |
+
c.showPage()
|
| 655 |
+
text_pdf.close()
|
| 656 |
+
|
| 657 |
+
else: # Unknown type
|
| 658 |
+
logger.warning(f"Unsupported file type for PDF combination: {filename} ({file_type})")
|
| 659 |
+
c.setPageSize(letter); c.setFont('Helvetica-Bold', 14); c.setFillColorRGB(0.7, 0.7, 0); c.drawCentredString(letter[0] / 2, letter[1] / 2 + 20, f"Unsupported File: {filename}")
|
| 660 |
+
c.setFont('Helvetica', 10); c.drawCentredString(letter[0] / 2, letter[1] / 2 - 20, f"Type: {file_type}. Cannot include.")
|
| 661 |
+
total_pages_generated += 1; draw_page_number(c, total_pages_generated, letter[0], letter[1])
|
| 662 |
+
c.showPage()
|
| 663 |
+
|
| 664 |
+
except Exception as item_err:
|
| 665 |
+
logger.error(f"Error processing item {filename} for PDF: {item_err}", exc_info=True)
|
| 666 |
+
try: # Add error page
|
| 667 |
+
c.setPageSize(letter); c.setFont('Helvetica-Bold', 14); c.setFillColorRGB(1, 0, 0); c.drawCentredString(letter[0] / 2, letter[1] / 2 + 20, f"Error processing: {filename}")
|
| 668 |
+
c.setFont('Helvetica', 10); c.drawCentredString(letter[0] / 2, letter[1] / 2 - 20, f"{str(item_err)[:100]}"); total_pages_generated += 1; draw_page_number(c, total_pages_generated, letter[0], letter[1]); c.showPage()
|
| 669 |
+
except: logger.error(f"Failed to add error page for {filename}")
|
| 670 |
+
finally:
|
| 671 |
+
status_placeholder.empty()
|
| 672 |
+
|
| 673 |
+
if total_pages_generated == 0: st.error("No pages were successfully added."); return None
|
| 674 |
+
try:
|
| 675 |
+
c.save(); buf.seek(0)
|
| 676 |
+
if buf.getbuffer().nbytes < 100: st.error("Combined PDF generation resulted empty."); return None
|
| 677 |
+
return buf.getvalue()
|
| 678 |
+
except Exception as e: logger.error(f"Fatal error during final PDF save: {e}"); st.error(f"PDF Save Failed: {e}"); return None
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
# --- Sidebar Gallery Update Function (MODIFIED for Sort, PDF Preview Fix, Delete Fix) ---
|
| 682 |
+
def get_sort_key(filename):
|
| 683 |
+
ext = os.path.splitext(filename)[1].lower()
|
| 684 |
+
if ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']: priority = 1
|
| 685 |
+
elif ext in ['.md', '.txt']: priority = 2
|
| 686 |
+
elif ext == '.pdf': priority = 3
|
| 687 |
+
else: priority = 4
|
| 688 |
+
return (priority, filename.lower())
|
| 689 |
+
|
| 690 |
+
def update_gallery():
|
| 691 |
+
st.sidebar.markdown("### Asset Gallery πΈπ")
|
| 692 |
+
all_files_unsorted = get_gallery_files()
|
| 693 |
+
all_files = sorted(all_files_unsorted, key=get_sort_key) # Apply sorting
|
| 694 |
+
|
| 695 |
+
if not all_files: st.sidebar.info("No assets found."); return
|
| 696 |
+
st.sidebar.caption(f"Found {len(all_files)} assets:")
|
| 697 |
+
|
| 698 |
+
for idx, file in enumerate(all_files):
|
| 699 |
+
st.session_state['unique_counter'] += 1
|
| 700 |
+
unique_id = st.session_state['unique_counter']
|
| 701 |
+
item_key_base = f"gallery_item_{os.path.basename(file)}_{unique_id}"
|
| 702 |
+
basename = os.path.basename(file)
|
| 703 |
+
st.sidebar.markdown(f"**{basename}**")
|
| 704 |
+
|
| 705 |
+
try:
|
| 706 |
+
file_ext = os.path.splitext(file)[1].lower()
|
| 707 |
+
preview_failed = False
|
| 708 |
+
# Previews with better error handling
|
| 709 |
+
if file_ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']:
|
| 710 |
+
try:
|
| 711 |
+
with st.sidebar.expander("Preview", expanded=False): st.image(Image.open(file), use_container_width=True)
|
| 712 |
+
except Exception as img_err: st.sidebar.warning(f"Img preview failed: {img_err}"); preview_failed = True
|
| 713 |
+
elif file_ext == '.pdf':
|
| 714 |
+
try:
|
| 715 |
+
with st.sidebar.expander("Preview (Page 1)", expanded=False):
|
| 716 |
+
doc = fitz.open(file)
|
| 717 |
+
if len(doc) > 0:
|
| 718 |
+
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
|
| 719 |
+
if pix.width > 0 and pix.height > 0: img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); st.image(img, use_container_width=True)
|
| 720 |
+
else: st.warning("Failed to render PDF page."); preview_failed = True
|
| 721 |
+
else: st.warning("Empty PDF")
|
| 722 |
+
doc.close()
|
| 723 |
+
except Exception as pdf_err: st.sidebar.warning(f"PDF preview failed: {pdf_err}"); logger.warning(f"PDF preview error {file}: {pdf_err}"); preview_failed = True
|
| 724 |
+
elif file_ext in ['.md', '.txt']:
|
| 725 |
+
try:
|
| 726 |
+
with st.sidebar.expander("Preview (Start)", expanded=False):
|
| 727 |
+
with open(file, 'r', encoding='utf-8', errors='ignore') as f: content_preview = f.read(200)
|
| 728 |
+
st.code(content_preview + "...", language='markdown' if file_ext == '.md' else 'text')
|
| 729 |
+
except Exception as txt_err: st.sidebar.warning(f"Text preview failed: {txt_err}"); preview_failed = True
|
| 730 |
+
|
| 731 |
+
# Actions
|
| 732 |
+
action_cols = st.sidebar.columns(3)
|
| 733 |
+
with action_cols[0]:
|
| 734 |
+
checkbox_key = f"cb_{item_key_base}"
|
| 735 |
+
st.session_state.setdefault('asset_checkboxes', {})
|
| 736 |
+
st.session_state['asset_checkboxes'][file] = st.checkbox("Select", value=st.session_state['asset_checkboxes'].get(file, False), key=checkbox_key)
|
| 737 |
+
with action_cols[1]:
|
| 738 |
+
mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.txt': 'text/plain', '.md': 'text/markdown'}
|
| 739 |
+
mime_type = mime_map.get(file_ext, "application/octet-stream"); dl_key = f"dl_{item_key_base}"
|
| 740 |
+
try:
|
| 741 |
+
with open(file, "rb") as fp: st.download_button(label="π₯", data=fp, file_name=basename, mime=mime_type, key=dl_key, help="Download")
|
| 742 |
+
except Exception as dl_e: st.error(f"DL Err: {dl_e}")
|
| 743 |
+
with action_cols[2]:
|
| 744 |
+
delete_key = f"del_{item_key_base}"
|
| 745 |
+
if st.button("ποΈ", key=delete_key, help=f"Delete {basename}"):
|
| 746 |
+
delete_success = False
|
| 747 |
+
try:
|
| 748 |
+
os.remove(file)
|
| 749 |
+
st.session_state['asset_checkboxes'].pop(file, None)
|
| 750 |
+
if file in st.session_state.get('layout_snapshots', []): st.session_state['layout_snapshots'].remove(file) # Remove if also in old list
|
| 751 |
+
logger.info(f"Deleted asset: {file}")
|
| 752 |
+
st.toast(f"Deleted {basename}!", icon="β
")
|
| 753 |
+
delete_success = True
|
| 754 |
+
except OSError as e: logger.error(f"Error deleting file {file}: {e}"); st.error(f"Could not delete {basename}: {e}")
|
| 755 |
+
except Exception as e: logger.error(f"Unexpected error deleting file {file}: {e}"); st.error(f"Could not delete {basename}: {e}")
|
| 756 |
+
# Rerun to refresh the gallery list after attempting delete
|
| 757 |
+
st.rerun()
|
| 758 |
+
|
| 759 |
+
except FileNotFoundError: st.sidebar.error(f"File vanished: {basename}"); st.session_state['asset_checkboxes'].pop(file, None)
|
| 760 |
+
except Exception as e: st.sidebar.error(f"Display Error: {basename}"); logger.error(f"Error displaying asset {file}: {e}")
|
| 761 |
+
st.sidebar.markdown("---")
|
| 762 |
+
|
| 763 |
+
# --- UI Elements -----------------------------------------
|
| 764 |
+
# Sidebar Structure
|
| 765 |
+
st.sidebar.subheader("π€ Hugging Face Settings")
|
| 766 |
+
# ... (HF API, Local Model, Params Expanders - code unchanged) ...
|
| 767 |
+
with st.sidebar.expander("API Inference Settings", expanded=False):
|
| 768 |
+
st.session_state.hf_custom_key = st.text_input("Custom HF Token (BYOK)", value=st.session_state.get('hf_custom_key', ""), type="password", key="hf_custom_key_input", help="Enter your Hugging Face API token. Overrides HF_TOKEN env var.")
|
| 769 |
+
token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set"); st.caption(f"Token Status: {token_status}")
|
| 770 |
+
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
| 771 |
+
st.session_state.hf_provider = st.selectbox("Inference Provider", options=providers_list, index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)), key="hf_provider_select", help="Select the backend provider. Some require specific API keys.")
|
| 772 |
+
if not st.session_state.hf_custom_key and not HF_TOKEN and st.session_state.hf_provider != "hf-inference": st.warning(f"Provider '{st.session_state.hf_provider}' may require a token.")
|
| 773 |
+
st.session_state.hf_custom_api_model = st.text_input("Custom API Model ID", value=st.session_state.get('hf_custom_api_model', ""), key="hf_custom_model_input", placeholder="e.g., google/gemma-2-9b-it", help="Overrides the featured model selection below if provided.")
|
| 774 |
+
effective_api_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model
|
| 775 |
+
st.session_state.hf_selected_api_model = st.selectbox("Featured API Model", options=FEATURED_MODELS_LIST, index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])), key="hf_featured_model_select", help="Select a common model. Ignored if Custom API Model ID is set.")
|
| 776 |
+
st.caption(f"Effective API Model: {effective_api_model}")
|
| 777 |
+
with st.sidebar.expander("Local Model Selection", expanded=True):
|
| 778 |
+
if not _transformers_available: st.warning("Transformers library not found.")
|
| 779 |
+
else:
|
| 780 |
+
local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys())
|
| 781 |
+
current_selection = st.session_state.get('selected_local_model_path'); current_selection = current_selection if current_selection in local_model_options else "None"
|
| 782 |
+
selected_path = st.selectbox("Active Local Model", options=local_model_options, index=local_model_options.index(current_selection), format_func=lambda x: os.path.basename(x) if x != "None" else "None", key="local_model_selector", help="Select a loaded local model.")
|
| 783 |
+
st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None
|
| 784 |
+
if st.session_state.selected_local_model_path:
|
| 785 |
+
model_info = st.session_state.local_models[st.session_state.selected_local_model_path]
|
| 786 |
+
st.caption(f"Type: {model_info.get('type', '?')} | Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}")
|
| 787 |
+
else: st.caption("No local model selected.")
|
| 788 |
+
with st.sidebar.expander("Generation Parameters", expanded=False):
|
| 789 |
+
st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), step=1, key="param_max_tokens")
|
| 790 |
+
st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp")
|
| 791 |
+
st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p")
|
| 792 |
+
st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 1.0, 2.0, st.session_state.get('gen_frequency_penalty', 0.0)+1.0, step=0.05, key="param_repetition", help="1.0 means no penalty.")
|
| 793 |
+
st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed", help="-1 for random.")
|
| 794 |
+
|
| 795 |
+
st.sidebar.markdown("---")
|
| 796 |
+
# Gallery is rendered later by calling update_gallery()
|
| 797 |
+
|
| 798 |
+
# --- App Title & Main Area ---
|
| 799 |
+
st.title("Vision & Layout Titans (HF) ππΌοΈπ")
|
| 800 |
+
st.markdown("Combined App: PDF Layout Generator + Hugging Face Powered AI Tools")
|
| 801 |
+
|
| 802 |
+
# Warning for missing libraries in main area if sidebar not ready
|
| 803 |
+
if not _transformers_available:
|
| 804 |
+
st.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.")
|
| 805 |
+
elif not _diffusers_available:
|
| 806 |
+
st.warning("Diffusers library not found. Diffusion model features disabled.")
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
# --- Main Application Tabs ---
|
| 810 |
+
tabs_to_create = [
|
| 811 |
+
"Combined PDF Generator π", # Renamed Tab 0
|
| 812 |
+
"Camera Snap π·",
|
| 813 |
+
"Download PDFs π₯",
|
| 814 |
+
"Build Titan (Local Models) π±",
|
| 815 |
+
"PDF Page Process (HF) π", # Clarified name
|
| 816 |
+
"Image Process (HF) πΌοΈ",
|
| 817 |
+
"Text Process (HF) π",
|
| 818 |
+
"Test OCR (HF) π",
|
| 819 |
+
"Test Image Gen (Diffusers) π¨",
|
| 820 |
+
"Character Editor π§βπ¨",
|
| 821 |
+
"Character Gallery πΌοΈ",
|
| 822 |
+
]
|
| 823 |
+
tabs = st.tabs(tabs_to_create)
|
| 824 |
+
|
| 825 |
+
# --- Tab Implementations ---
|
| 826 |
+
|
| 827 |
+
# --- Tab 1: Combined PDF Generator (OVERHAULED) ---
|
| 828 |
+
with tabs[0]:
|
| 829 |
+
st.header("Combined PDF Generator πβπΌοΈβ...")
|
| 830 |
+
st.markdown("Select assets (Images, PDFs, Text/MD) from the sidebar gallery, reorder them, and generate a combined PDF.")
|
| 831 |
+
|
| 832 |
+
# --- Get Selected Files ---
|
| 833 |
+
selected_files_paths = [
|
| 834 |
+
f for f, selected in st.session_state.get('asset_checkboxes', {}).items()
|
| 835 |
+
if selected and os.path.exists(f) # Ensure file still exists
|
| 836 |
+
]
|
| 837 |
+
|
| 838 |
+
if not selected_files_paths:
|
| 839 |
+
st.info("π Select one or more assets from the sidebar gallery using the checkboxes.")
|
| 840 |
+
else:
|
| 841 |
+
st.info(f"{len(selected_files_paths)} assets selected from gallery.")
|
| 842 |
+
|
| 843 |
+
# --- Populate DataFrame for Reordering ---
|
| 844 |
+
combined_records = []
|
| 845 |
+
for idx, filepath in enumerate(selected_files_paths):
|
| 846 |
+
filename = os.path.basename(filepath)
|
| 847 |
+
ext = os.path.splitext(filename)[1].lower()
|
| 848 |
+
file_type = "Unknown"
|
| 849 |
+
if ext in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff']: file_type = "Image"
|
| 850 |
+
elif ext == '.pdf': file_type = "PDF"
|
| 851 |
+
elif ext in ['.md', '.txt']: file_type = "Text"
|
| 852 |
+
|
| 853 |
+
combined_records.append({
|
| 854 |
+
"filename": filename,
|
| 855 |
+
"filepath": filepath, # Keep the path
|
| 856 |
+
"type": file_type,
|
| 857 |
+
"order": idx, # Initial order based on selection
|
| 858 |
+
})
|
| 859 |
+
|
| 860 |
+
combined_df_initial = pd.DataFrame(combined_records)
|
| 861 |
+
|
| 862 |
+
st.markdown("#### Reorder Selected Assets for PDF")
|
| 863 |
+
st.caption("Edit the 'Order' column or drag rows to set the sequence for the combined PDF.")
|
| 864 |
+
|
| 865 |
+
edited_combined_df = st.data_editor(
|
| 866 |
+
combined_df_initial,
|
| 867 |
+
column_config={
|
| 868 |
+
"filename": st.column_config.TextColumn("Filename", disabled=True),
|
| 869 |
+
"filepath": None, # Hide filepath column
|
| 870 |
+
"type": st.column_config.TextColumn("Type", disabled=True),
|
| 871 |
+
"order": st.column_config.NumberColumn(
|
| 872 |
+
"Order",
|
| 873 |
+
min_value=0,
|
| 874 |
+
# max_value=len(combined_df_initial)-1, # Max can cause issues if rows added/removed by user selection change
|
| 875 |
+
step=1,
|
| 876 |
+
required=True,
|
| 877 |
+
),
|
| 878 |
+
},
|
| 879 |
+
hide_index=True,
|
| 880 |
+
use_container_width=True,
|
| 881 |
+
num_rows="dynamic", # Allow drag-and-drop reordering
|
| 882 |
+
key="combined_pdf_editor"
|
| 883 |
+
)
|
| 884 |
+
|
| 885 |
+
# Sort by the edited 'order' column
|
| 886 |
+
ordered_combined_df = edited_combined_df.sort_values('order').reset_index(drop=True)
|
| 887 |
+
|
| 888 |
+
# Prepare list of dicts for the PDF generation function
|
| 889 |
+
ordered_sources_info_for_pdf = ordered_combined_df[['filepath', 'type', 'filename']].to_dict('records')
|
| 890 |
+
|
| 891 |
+
# --- Generate & Download ---
|
| 892 |
+
st.subheader("Generate Combined PDF")
|
| 893 |
+
if st.button("ποΈ Generate Combined PDF", key="generate_combined_pdf_btn"):
|
| 894 |
+
if not ordered_sources_info_for_pdf:
|
| 895 |
+
st.warning("No items available after reordering.")
|
| 896 |
+
else:
|
| 897 |
+
with st.spinner("Generating combined PDF... This might take a while."):
|
| 898 |
+
combined_pdf_bytes = make_combined_pdf(ordered_sources_info_for_pdf)
|
| 899 |
+
|
| 900 |
+
if combined_pdf_bytes:
|
| 901 |
+
# Create filename
|
| 902 |
+
now = datetime.now(pytz.timezone("US/Central"))
|
| 903 |
+
prefix = now.strftime("%Y%m%d-%H%M%p")
|
| 904 |
+
first_item_name = clean_stem(ordered_sources_info_for_pdf[0].get('filename','combined'))
|
| 905 |
+
combined_pdf_fname = f"{prefix}_Combined_{first_item_name}.pdf"
|
| 906 |
+
combined_pdf_fname = re.sub(r'[^\w\-\.\_]', '_', combined_pdf_fname) # Sanitize
|
| 907 |
+
|
| 908 |
+
st.success(f"β
Combined PDF ready: **{combined_pdf_fname}**")
|
| 909 |
+
st.download_button(
|
| 910 |
+
"β¬οΈ Download Combined PDF",
|
| 911 |
+
data=combined_pdf_bytes,
|
| 912 |
+
file_name=combined_pdf_fname,
|
| 913 |
+
mime="application/pdf",
|
| 914 |
+
key="download_combined_pdf_btn"
|
| 915 |
+
)
|
| 916 |
+
# Add preview (optional, might be slow for large combined PDFs)
|
| 917 |
+
# ... (preview logic similar to other tabs if desired) ...
|
| 918 |
+
else:
|
| 919 |
+
st.error("Combined PDF generation failed. Check logs or input files.")
|
| 920 |
+
|
| 921 |
+
|
| 922 |
+
# --- Tab 2: Camera Snap ---
|
| 923 |
+
with tabs[1]:
|
| 924 |
+
st.header("Camera Snap π·")
|
| 925 |
+
st.subheader("Single Capture (Adds to General Gallery)")
|
| 926 |
+
cols = st.columns(2)
|
| 927 |
+
with cols[0]:
|
| 928 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="main_cam0")
|
| 929 |
+
if cam0_img:
|
| 930 |
+
filename = generate_filename("cam0_snap");
|
| 931 |
+
if st.session_state.get('cam0_file') and os.path.exists(st.session_state['cam0_file']): try: os.remove(st.session_state['cam0_file']) except OSError: pass
|
| 932 |
+
try:
|
| 933 |
+
with open(filename, "wb") as f: f.write(cam0_img.getvalue())
|
| 934 |
+
st.session_state['cam0_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 0: {filename}"); st.image(Image.open(filename), caption="Camera 0 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 0: {filename}"); st.success(f"Saved {filename}")
|
| 935 |
+
update_gallery(); # Refresh sidebar without rerun
|
| 936 |
+
except Exception as e: st.error(f"Failed to save Cam 0 snap: {e}"); logger.error(f"Failed to save Cam 0 snap {filename}: {e}")
|
| 937 |
+
with cols[1]:
|
| 938 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="main_cam1")
|
| 939 |
+
if cam1_img:
|
| 940 |
+
filename = generate_filename("cam1_snap")
|
| 941 |
+
if st.session_state.get('cam1_file') and os.path.exists(st.session_state['cam1_file']): try: os.remove(st.session_state['cam1_file']) except OSError: pass
|
| 942 |
+
try:
|
| 943 |
+
with open(filename, "wb") as f: f.write(cam1_img.getvalue())
|
| 944 |
+
st.session_state['cam1_file'] = filename; st.session_state['history'].append(f"Snapshot from Cam 1: {filename}"); st.image(Image.open(filename), caption="Camera 1 Snap", use_container_width=True); logger.info(f"Saved snapshot from Camera 1: {filename}"); st.success(f"Saved {filename}")
|
| 945 |
+
update_gallery(); # Refresh sidebar without rerun
|
| 946 |
+
except Exception as e: st.error(f"Failed to save Cam 1 snap: {e}"); logger.error(f"Failed to save Cam 1 snap {filename}: {e}")
|
| 947 |
+
|
| 948 |
+
|
| 949 |
+
# --- Tab 3: Download PDFs ---
|
| 950 |
+
with tabs[2]:
|
| 951 |
+
st.header("Download PDFs π₯")
|
| 952 |
+
st.markdown("Download PDFs from URLs and optionally create image snapshots.")
|
| 953 |
+
if st.button("Load Example arXiv URLs π", key="load_examples"):
|
| 954 |
+
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1706.03762", "https://arxiv.org/pdf/2402.17764", "https://www.clickdimensions.com/links/ACCERL/"]
|
| 955 |
+
st.session_state['pdf_urls_input'] = "\n".join(example_urls)
|
| 956 |
+
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls_input', ""), height=150, key="pdf_urls_textarea")
|
| 957 |
+
if st.button("Robo-Download PDFs π€", key="download_pdfs_button"):
|
| 958 |
+
urls = [url.strip() for url in url_input.strip().split("\n") if url.strip()]
|
| 959 |
+
if not urls: st.warning("Please enter at least one URL.")
|
| 960 |
+
else:
|
| 961 |
+
progress_bar = st.progress(0); status_text = st.empty(); total_urls = len(urls); download_count = 0; existing_pdfs = get_pdf_files()
|
| 962 |
+
for idx, url in enumerate(urls):
|
| 963 |
+
output_path = pdf_url_to_filename(url); status_text.text(f"Processing {idx + 1}/{total_urls}: {os.path.basename(output_path)}..."); progress_bar.progress((idx + 1) / total_urls)
|
| 964 |
+
if os.path.exists(output_path): # Check existence properly
|
| 965 |
+
st.info(f"Already exists: {os.path.basename(output_path)}")
|
| 966 |
+
st.session_state['downloaded_pdfs'][url] = output_path
|
| 967 |
+
# Ensure checkbox state is preserved or reset if needed
|
| 968 |
+
st.session_state['asset_checkboxes'][output_path] = st.session_state['asset_checkboxes'].get(output_path, False)
|
| 969 |
+
else:
|
| 970 |
+
if download_pdf(url, output_path):
|
| 971 |
+
st.session_state['downloaded_pdfs'][url] = output_path; logger.info(f"Downloaded PDF from {url} to {output_path}"); st.session_state['history'].append(f"Downloaded PDF: {output_path}"); st.session_state['asset_checkboxes'][output_path] = False; download_count += 1; existing_pdfs.append(output_path)
|
| 972 |
+
else: st.error(f"Failed to download: {url}")
|
| 973 |
+
status_text.success(f"Download process complete! Successfully downloaded {download_count} new PDFs.")
|
| 974 |
+
if download_count > 0: update_gallery(); # Refresh sidebar without rerun
|
| 975 |
+
|
| 976 |
+
st.subheader("Create Snapshots from Gallery PDFs")
|
| 977 |
+
snapshot_mode = st.selectbox("Snapshot Mode", ["First Page (High-Res)", "First Two Pages (High-Res)", "All Pages (High-Res)", "First Page (Low-Res Preview)"], key="pdf_snapshot_mode")
|
| 978 |
+
resolution_map = {"First Page (High-Res)": 2.0, "First Two Pages (High-Res)": 2.0, "All Pages (High-Res)": 2.0, "First Page (Low-Res Preview)": 1.0}
|
| 979 |
+
mode_key_map = {"First Page (High-Res)": "single", "First Two Pages (High-Res)": "twopage", "All Pages (High-Res)": "allpages", "First Page (Low-Res Preview)": "single"}
|
| 980 |
+
resolution = resolution_map[snapshot_mode]; mode_key = mode_key_map[snapshot_mode]
|
| 981 |
+
if st.button("Snapshot Selected PDFs πΈ", key="snapshot_selected_pdfs"):
|
| 982 |
+
selected_pdfs = [path for path in get_gallery_files(['pdf']) if st.session_state['asset_checkboxes'].get(path, False)]
|
| 983 |
+
if not selected_pdfs: st.warning("No PDFs selected in the sidebar gallery!")
|
| 984 |
+
else:
|
| 985 |
+
st.info(f"Starting snapshot process for {len(selected_pdfs)} selected PDF(s)..."); snapshot_count = 0; total_snapshots_generated = 0
|
| 986 |
+
for pdf_path in selected_pdfs:
|
| 987 |
+
if not os.path.exists(pdf_path): st.warning(f"File not found: {pdf_path}. Skipping."); continue
|
| 988 |
+
new_snapshots = asyncio.run(process_pdf_snapshot(pdf_path, mode_key, resolution))
|
| 989 |
+
if new_snapshots:
|
| 990 |
+
snapshot_count += 1; total_snapshots_generated += len(new_snapshots)
|
| 991 |
+
st.write(f"Snapshots for {os.path.basename(pdf_path)}:"); cols = st.columns(3)
|
| 992 |
+
for i, snap_path in enumerate(new_snapshots):
|
| 993 |
+
with cols[i % 3]:
|
| 994 |
+
try: st.image(Image.open(snap_path), caption=os.path.basename(snap_path), use_container_width=True)
|
| 995 |
+
except Exception as snap_img_err: st.warning(f"Cannot display snap {os.path.basename(snap_path)}: {snap_img_err}")
|
| 996 |
+
st.session_state['asset_checkboxes'][snap_path] = False # Add to gallery
|
| 997 |
+
if total_snapshots_generated > 0: st.success(f"Generated {total_snapshots_generated} snapshots from {snapshot_count} PDFs."); update_gallery(); # Refresh sidebar without rerun
|
| 998 |
+
else: st.warning("No snapshots were generated. Check logs or PDF files.")
|
| 999 |
+
|
| 1000 |
+
|
| 1001 |
+
# --- Tab 4: Build Titan (Local Models) ---
|
| 1002 |
+
with tabs[3]:
|
| 1003 |
+
st.header("Build Titan (Local Models) π±")
|
| 1004 |
+
st.markdown("Download and save models from Hugging Face Hub for local use.")
|
| 1005 |
+
if not _transformers_available:
|
| 1006 |
+
st.error("Transformers library not available. Cannot download or load local models.")
|
| 1007 |
+
else:
|
| 1008 |
+
build_model_type = st.selectbox("Select Model Type", ["Causal LM", "Vision/Multimodal", "OCR", "Diffusion"], key="build_type_local")
|
| 1009 |
+
st.subheader(f"Download {build_model_type} Model")
|
| 1010 |
+
hf_model_id = st.text_input("Hugging Face Model ID", placeholder=f"e.g., {'google/gemma-2-9b-it' if build_model_type == 'Causal LM' else 'llava-hf/llava-1.5-7b-hf' if build_model_type == 'Vision/Multimodal' else 'microsoft/trocr-base-handwritten' if build_model_type == 'OCR' else 'stabilityai/stable-diffusion-xl-base-1.0'}", key="build_hf_model_id")
|
| 1011 |
+
local_model_name = st.text_input("Local Name for this Model", value=f"{build_model_type.split('/')[0].lower()}_{os.path.basename(hf_model_id).replace('.','') if hf_model_id else 'model'}", key="build_local_name", help="A unique name to identify this model locally.")
|
| 1012 |
+
st.info("Private or gated models require a valid Hugging Face token (set via HF_TOKEN env var or the Custom Key in sidebar API settings).")
|
| 1013 |
+
|
| 1014 |
+
if st.button(f"Download & Save '{hf_model_id}' Locally", key="build_download_button", disabled=not hf_model_id or not local_model_name):
|
| 1015 |
+
local_name_check = re.sub(r'[^\w\-]+', '_', local_model_name) # Sanitize proposed name for path check
|
| 1016 |
+
potential_path_base = os.path.join(f"{build_model_type.split('/')[0].lower()}_models", local_name_check)
|
| 1017 |
+
|
| 1018 |
+
if any(os.path.basename(p) == local_name_check for p in get_local_model_paths(build_model_type.split('/')[0].lower())):
|
| 1019 |
+
st.error(f"A local model folder named '{local_name_check}' already exists. Choose a different local name.")
|
| 1020 |
+
else:
|
| 1021 |
+
model_type_map = {"Causal LM": "causal", "Vision/Multimodal": "vision", "OCR": "ocr", "Diffusion": "diffusion"}
|
| 1022 |
+
model_type_short = model_type_map.get(build_model_type, "unknown")
|
| 1023 |
+
config = LocalModelConfig(name=local_model_name, hf_id=hf_model_id, model_type=model_type_short)
|
| 1024 |
+
save_path = config.get_full_path()
|
| 1025 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
| 1026 |
+
st.info(f"Attempting to download '{hf_model_id}' to '{save_path}'..."); progress_bar_build = st.progress(0); status_text_build = st.empty()
|
| 1027 |
+
token_build = st.session_state.hf_custom_key or HF_TOKEN or None
|
| 1028 |
+
try:
|
| 1029 |
+
if build_model_type == "Diffusion":
|
| 1030 |
+
if not _diffusers_available: raise ImportError("Diffusers library required.")
|
| 1031 |
+
status_text_build.text("Downloading diffusion pipeline..."); pipeline_obj = StableDiffusionPipeline.from_pretrained(hf_model_id, token=token_build); status_text_build.text("Saving diffusion model pipeline..."); pipeline_obj.save_pretrained(save_path)
|
| 1032 |
+
st.session_state.local_models[save_path] = {'type': 'diffusion', 'hf_id': hf_model_id, 'model':None, 'processor':None} # Mark as downloaded
|
| 1033 |
+
st.success(f"Diffusion model '{hf_model_id}' downloaded and saved to {save_path}")
|
| 1034 |
+
del pipeline_obj # Free memory
|
| 1035 |
+
else:
|
| 1036 |
+
status_text_build.text("Downloading model components...")
|
| 1037 |
+
if model_type_short == 'causal': model_class, proc_tok_class = AutoModelForCausalLM, AutoTokenizer; proc_name="tokenizer"
|
| 1038 |
+
elif model_type_short == 'vision': model_class, proc_tok_class = AutoModelForVision2Seq, AutoProcessor; proc_name="processor"
|
| 1039 |
+
elif model_type_short == 'ocr': model_class, proc_tok_class = AutoModelForVision2Seq, AutoProcessor; proc_name="processor"
|
| 1040 |
+
else: raise ValueError(f"Unknown model type: {model_type_short}")
|
| 1041 |
+
|
| 1042 |
+
model_obj = model_class.from_pretrained(hf_model_id, token=token_build); model_obj.save_pretrained(save_path)
|
| 1043 |
+
status_text_build.text(f"Model saved. Downloading {proc_name}..."); proc_tok_obj = proc_tok_class.from_pretrained(hf_model_id, token=token_build); proc_tok_obj.save_pretrained(save_path)
|
| 1044 |
+
status_text_build.text(f"Components saved. Loading '{local_model_name}' into memory...")
|
| 1045 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 1046 |
+
# Use trust_remote_code cautiously if needed for specific models
|
| 1047 |
+
reloaded_model = model_class.from_pretrained(save_path).to(device)
|
| 1048 |
+
reloaded_proc_tok = proc_tok_class.from_pretrained(save_path)
|
| 1049 |
+
st.session_state.local_models[save_path] = {'type': model_type_short, 'hf_id': hf_model_id, 'model': reloaded_model, proc_name: reloaded_proc_tok}
|
| 1050 |
+
# Add tokenizer specifically if it's nested in processor
|
| 1051 |
+
if proc_name == "processor" and hasattr(reloaded_proc_tok, 'tokenizer'):
|
| 1052 |
+
st.session_state.local_models[save_path]['tokenizer'] = reloaded_proc_tok.tokenizer
|
| 1053 |
+
st.success(f"{build_model_type} model '{hf_model_id}' downloaded to {save_path} and loaded ({device})."); st.session_state.selected_local_model_path = save_path
|
| 1054 |
+
del model_obj, proc_tok_obj # Free memory from download cache if possible
|
| 1055 |
+
except (RepositoryNotFoundError, GatedRepoError) as e: st.error(f"Download failed: Repo not found or requires access/token. Error: {e}"); logger.error(f"Download failed for {hf_model_id}: {e}"); #if os.path.exists(save_path): shutil.rmtree(save_path)
|
| 1056 |
+
except ImportError as e: st.error(f"Download failed: Library missing. {e}"); logger.error(f"ImportError for {hf_model_id}: {e}")
|
| 1057 |
+
except Exception as e: st.error(f"Download error: {e}"); logger.error(f"Download failed for {hf_model_id}: {e}", exc_info=True); #if os.path.exists(save_path): shutil.rmtree(save_path)
|
| 1058 |
+
finally: progress_bar_build.progress(1.0); status_text_build.empty(); #st.rerun() # Rerun removed
|
| 1059 |
+
|
| 1060 |
+
st.subheader("Manage Local Models")
|
| 1061 |
+
# Refresh list for display
|
| 1062 |
+
loaded_model_paths = list(st.session_state.get('local_models', {}).keys())
|
| 1063 |
+
if not loaded_model_paths: st.info("No models downloaded yet.")
|
| 1064 |
+
else:
|
| 1065 |
+
models_df_data = []
|
| 1066 |
+
for path in loaded_model_paths:
|
| 1067 |
+
data = st.session_state.local_models.get(path, {}) # Safely get data
|
| 1068 |
+
models_df_data.append({
|
| 1069 |
+
"Local Name": os.path.basename(path), "Type": data.get('type', '?'),
|
| 1070 |
+
"HF ID": data.get('hf_id', '?'), "Loaded": "Yes" if data.get('model') else "No", "Path": path })
|
| 1071 |
+
models_df = pd.DataFrame(models_df_data); st.dataframe(models_df, use_container_width=True, hide_index=True, column_order=["Local Name", "Type", "HF ID", "Loaded"])
|
| 1072 |
+
model_to_delete = st.selectbox("Select model to delete", [""] + [os.path.basename(p) for p in loaded_model_paths], key="delete_model_select")
|
| 1073 |
+
if model_to_delete and st.button(f"Delete Local Model '{model_to_delete}'", type="primary"):
|
| 1074 |
+
path_to_delete = next((p for p in loaded_model_paths if os.path.basename(p) == model_to_delete), None)
|
| 1075 |
+
if path_to_delete:
|
| 1076 |
+
try:
|
| 1077 |
+
# Explicitly delete model objects from memory first if they exist
|
| 1078 |
+
if path_to_delete in st.session_state.local_models:
|
| 1079 |
+
model_data_to_del = st.session_state.local_models[path_to_delete]
|
| 1080 |
+
if model_data_to_del.get('model'): del model_data_to_del['model']
|
| 1081 |
+
if model_data_to_del.get('tokenizer'): del model_data_to_del['tokenizer']
|
| 1082 |
+
if model_data_to_del.get('processor'): del model_data_to_del['processor']
|
| 1083 |
+
if _transformers_available and torch.cuda.is_available(): torch.cuda.empty_cache() # Try to clear VRAM
|
| 1084 |
+
|
| 1085 |
+
# Remove from session state
|
| 1086 |
+
st.session_state.local_models.pop(path_to_delete, None)
|
| 1087 |
+
if st.session_state.selected_local_model_path == path_to_delete: st.session_state.selected_local_model_path = None
|
| 1088 |
+
# Delete from disk
|
| 1089 |
+
if os.path.exists(path_to_delete): shutil.rmtree(path_to_delete)
|
| 1090 |
+
st.success(f"Deleted model '{model_to_delete}'."); logger.info(f"Deleted local model: {path_to_delete}"); st.rerun()
|
| 1091 |
+
except Exception as e: st.error(f"Failed to delete model '{model_to_delete}': {e}"); logger.error(f"Failed to delete model {path_to_delete}: {e}")
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
# --- Tab 5: PDF Process (HF) ---
|
| 1095 |
+
with tabs[4]:
|
| 1096 |
+
st.header("PDF Page Process with HF Models π")
|
| 1097 |
+
st.markdown("Upload PDFs, view pages, and extract text/info using selected HF models (API or Local Vision/OCR).")
|
| 1098 |
+
pdf_use_api = st.radio("Choose Processing Method", ["Hugging Face API", "Loaded Local Model"], key="pdf_process_source", horizontal=True, help="API uses settings from sidebar. Local uses the selected local model (if suitable for vision/OCR).")
|
| 1099 |
+
if pdf_use_api == "Hugging Face API": st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model} (likely image-to-text)")
|
| 1100 |
+
else:
|
| 1101 |
+
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
|
| 1102 |
+
else: st.warning("No local model selected.")
|
| 1103 |
+
|
| 1104 |
+
uploaded_pdfs_process_hf = st.file_uploader("Upload PDF files to process", type=["pdf"], accept_multiple_files=True, key="pdf_process_uploader_hf")
|
| 1105 |
+
if uploaded_pdfs_process_hf:
|
| 1106 |
+
process_all_pages_pdf = st.checkbox("Process All Pages (can be slow/expensive)", value=False, key="pdf_process_all_hf")
|
| 1107 |
+
pdf_prompt = st.text_area("Prompt for PDF Page Processing", "Extract the text content from this page.", key="pdf_process_prompt_hf")
|
| 1108 |
+
if st.button("Process Uploaded PDFs with HF", key="process_uploaded_pdfs_hf"):
|
| 1109 |
+
if pdf_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: st.error("Cannot process locally: No local model selected.")
|
| 1110 |
+
else:
|
| 1111 |
+
combined_text_output_hf = f"# HF PDF Processing Results ({'API' if pdf_use_api else 'Local'})\n\n"; total_pages_processed_hf = 0; output_placeholder_hf = st.container()
|
| 1112 |
+
for pdf_file in uploaded_pdfs_process_hf:
|
| 1113 |
+
output_placeholder_hf.markdown(f"--- \n### Processing: {pdf_file.name}")
|
| 1114 |
+
try:
|
| 1115 |
+
pdf_bytes = pdf_file.read(); doc = fitz.open("pdf", pdf_bytes); num_pages = len(doc)
|
| 1116 |
+
pages_to_process = range(num_pages) if process_all_pages_pdf else range(min(1, num_pages))
|
| 1117 |
+
output_placeholder_hf.info(f"Processing {len(pages_to_process)} of {num_pages} pages..."); doc_text = f"## File: {pdf_file.name}\n\n"
|
| 1118 |
+
for i in pages_to_process:
|
| 1119 |
+
page_placeholder = output_placeholder_hf.empty(); page_placeholder.info(f"Processing Page {i + 1}/{num_pages}...")
|
| 1120 |
+
page = doc.load_page(i); pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 1121 |
+
cols_pdf = output_placeholder_hf.columns(2); cols_pdf[0].image(img, caption=f"Page {i+1}", use_container_width=True)
|
| 1122 |
+
with cols_pdf[1], st.spinner("Processing page with HF model..."): hf_text = process_image_hf(img, pdf_prompt, use_api=pdf_use_api)
|
| 1123 |
+
st.text_area(f"Result (Page {i+1})", hf_text, height=250, key=f"pdf_hf_out_{pdf_file.name}_{i}")
|
| 1124 |
+
doc_text += f"### Page {i + 1}\n\n{hf_text}\n\n---\n\n"; total_pages_processed_hf += 1; page_placeholder.empty()
|
| 1125 |
+
combined_text_output_hf += doc_text; doc.close()
|
| 1126 |
+
except Exception as e: output_placeholder_hf.error(f"Error processing {pdf_file.name}: {str(e)}")
|
| 1127 |
+
if total_pages_processed_hf > 0:
|
| 1128 |
+
st.markdown("--- \n### Combined Processing Results"); st.text_area("Full Output", combined_text_output_hf, height=400, key="combined_pdf_hf_output")
|
| 1129 |
+
output_filename_pdf_hf = generate_filename("hf_processed_pdfs", "md")
|
| 1130 |
+
try:
|
| 1131 |
+
with open(output_filename_pdf_hf, "w", encoding="utf-8") as f: f.write(combined_text_output_hf)
|
| 1132 |
+
st.success(f"Combined output saved to {output_filename_pdf_hf}")
|
| 1133 |
+
st.markdown(get_download_link(output_filename_pdf_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
|
| 1134 |
+
st.session_state['asset_checkboxes'][output_filename_pdf_hf] = False; update_gallery() # Refresh sidebar
|
| 1135 |
+
except IOError as e: st.error(f"Failed to save combined output file: {e}")
|
| 1136 |
+
|
| 1137 |
+
# --- Tab 6: Image Process (HF) ---
|
| 1138 |
+
with tabs[5]:
|
| 1139 |
+
st.header("Image Process with HF Models πΌοΈ")
|
| 1140 |
+
st.markdown("Upload images and process them using selected HF models (API or Local).")
|
| 1141 |
+
img_use_api = st.radio("Choose Processing Method", ["Hugging Face API", "Loaded Local Model"], key="img_process_source_hf", horizontal=True)
|
| 1142 |
+
if img_use_api == "Hugging Face API": st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model} (likely image-to-text)")
|
| 1143 |
+
else:
|
| 1144 |
+
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
|
| 1145 |
+
else: st.warning("No local model selected.")
|
| 1146 |
+
img_prompt_hf = st.text_area("Prompt for Image Processing", "Describe this image in detail.", key="img_process_prompt_hf")
|
| 1147 |
+
uploaded_images_process_hf = st.file_uploader("Upload image files", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key="image_process_uploader_hf")
|
| 1148 |
+
if uploaded_images_process_hf:
|
| 1149 |
+
if st.button("Process Uploaded Images with HF", key="process_images_hf"):
|
| 1150 |
+
if img_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: st.error("Cannot process locally: No local model selected.")
|
| 1151 |
+
else:
|
| 1152 |
+
combined_img_text_hf = f"# HF Image Processing Results ({'API' if img_use_api else 'Local'})\n\n**Prompt:** {img_prompt_hf}\n\n---\n\n"; images_processed_hf = 0; output_img_placeholder_hf = st.container()
|
| 1153 |
+
for img_file in uploaded_images_process_hf:
|
| 1154 |
+
output_img_placeholder_hf.markdown(f"### Processing: {img_file.name}")
|
| 1155 |
+
try:
|
| 1156 |
+
img = Image.open(img_file); cols_img_hf = output_img_placeholder_hf.columns(2); cols_img_hf[0].image(img, caption=f"Input: {img_file.name}", use_container_width=True)
|
| 1157 |
+
with cols_img_hf[1], st.spinner("Processing image with HF model..."): hf_img_text = process_image_hf(img, img_prompt_hf, use_api=img_use_api)
|
| 1158 |
+
st.text_area(f"Result", hf_img_text, height=300, key=f"img_hf_out_{img_file.name}")
|
| 1159 |
+
combined_img_text_hf += f"## Image: {img_file.name}\n\n{hf_img_text}\n\n---\n\n"; images_processed_hf += 1
|
| 1160 |
+
except UnidentifiedImageError: output_img_placeholder_hf.error(f"Invalid Image: {img_file.name}. Skipping.")
|
| 1161 |
+
except Exception as e: output_img_placeholder_hf.error(f"Error processing {img_file.name}: {str(e)}")
|
| 1162 |
+
if images_processed_hf > 0:
|
| 1163 |
+
st.markdown("--- \n### Combined Processing Results"); st.text_area("Full Output", combined_img_text_hf, height=400, key="combined_img_hf_output")
|
| 1164 |
+
output_filename_img_hf = generate_filename("hf_processed_images", "md")
|
| 1165 |
+
try:
|
| 1166 |
+
with open(output_filename_img_hf, "w", encoding="utf-8") as f: f.write(combined_img_text_hf)
|
| 1167 |
+
st.success(f"Combined output saved to {output_filename_img_hf}"); st.markdown(get_download_link(output_filename_img_hf, "text/markdown", "Download Combined MD"), unsafe_allow_html=True)
|
| 1168 |
+
st.session_state['asset_checkboxes'][output_filename_img_hf] = False; update_gallery() # Refresh sidebar
|
| 1169 |
+
except IOError as e: st.error(f"Failed to save combined output file: {e}")
|
| 1170 |
+
|
| 1171 |
+
# --- Tab 7: Text Process (HF) ---
|
| 1172 |
+
with tabs[6]:
|
| 1173 |
+
st.header("Text Process with HF Models π")
|
| 1174 |
+
st.markdown("Process Markdown (.md) or Text (.txt) files using selected HF models (API or Local).")
|
| 1175 |
+
text_use_api = st.radio("Choose Processing Method", ["Hugging Face API", "Loaded Local Model"], key="text_process_source_hf", horizontal=True)
|
| 1176 |
+
if text_use_api == "Hugging Face API": st.info(f"Using API Model: {st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model}")
|
| 1177 |
+
else:
|
| 1178 |
+
if st.session_state.selected_local_model_path: st.info(f"Using Local Model: {os.path.basename(st.session_state.selected_local_model_path)}")
|
| 1179 |
+
else: st.warning("No local model selected.")
|
| 1180 |
+
text_files_hf = get_gallery_files(['md', 'txt'])
|
| 1181 |
+
if not text_files_hf: st.warning("No .md or .txt files in gallery to process.")
|
| 1182 |
+
else:
|
| 1183 |
+
selected_text_file_hf = st.selectbox("Select Text/MD File to Process", options=[""] + text_files_hf, format_func=lambda x: os.path.basename(x) if x else "Select a file...", key="text_process_select_hf")
|
| 1184 |
+
if selected_text_file_hf:
|
| 1185 |
+
st.write(f"Selected: {os.path.basename(selected_text_file_hf)}")
|
| 1186 |
+
try:
|
| 1187 |
+
with open(selected_text_file_hf, "r", encoding="utf-8", errors='ignore') as f: content_text_hf = f.read()
|
| 1188 |
+
st.text_area("File Content Preview", content_text_hf[:1000] + ("..." if len(content_text_hf) > 1000 else ""), height=200, key="text_content_preview_hf")
|
| 1189 |
+
prompt_text_hf = st.text_area("Enter Prompt for this File", "Summarize the key points of this text.", key="text_individual_prompt_hf")
|
| 1190 |
+
if st.button(f"Process '{os.path.basename(selected_text_file_hf)}' with HF", key=f"process_text_hf_btn"):
|
| 1191 |
+
if text_use_api == "Loaded Local Model" and not st.session_state.selected_local_model_path: st.error("Cannot process locally: No local model selected.")
|
| 1192 |
+
else:
|
| 1193 |
+
with st.spinner("Processing text with HF model..."): result_text_processed = process_text_hf(content_text_hf, prompt_text_hf, use_api=text_use_api)
|
| 1194 |
+
st.markdown("### Processing Result"); st.markdown(result_text_processed)
|
| 1195 |
+
output_filename_text_hf = generate_filename(f"hf_processed_{os.path.splitext(os.path.basename(selected_text_file_hf))[0]}", "md")
|
| 1196 |
+
try:
|
| 1197 |
+
with open(output_filename_text_hf, "w", encoding="utf-8") as f: f.write(result_text_processed)
|
| 1198 |
+
st.success(f"Result saved to {output_filename_text_hf}"); st.markdown(get_download_link(output_filename_text_hf, "text/markdown", "Download Result MD"), unsafe_allow_html=True)
|
| 1199 |
+
st.session_state['asset_checkboxes'][output_filename_text_hf] = False; update_gallery() # Refresh sidebar
|
| 1200 |
+
except IOError as e: st.error(f"Failed to save result file: {e}")
|
| 1201 |
+
except FileNotFoundError: st.error("Selected file not found.")
|
| 1202 |
+
except Exception as e: st.error(f"Error reading file: {e}")
|
| 1203 |
+
|
| 1204 |
+
# --- Tab 8: Test OCR (HF) ---
|
| 1205 |
+
with tabs[7]:
|
| 1206 |
+
st.header("Test OCR with HF Models π")
|
| 1207 |
+
st.markdown("Select an image/PDF and run OCR using HF models (API or Local - requires suitable local model).")
|
| 1208 |
+
ocr_use_api = st.radio("Choose OCR Method", ["Hugging Face API (Basic Captioning/OCR)", "Loaded Local OCR Model"], key="ocr_source_hf", horizontal=True, help="API uses basic image-to-text. Local requires a dedicated OCR model (e.g., TrOCR) to be loaded.")
|
| 1209 |
+
if ocr_use_api == "Loaded Local OCR Model":
|
| 1210 |
+
if st.session_state.selected_local_model_path:
|
| 1211 |
+
model_info = st.session_state.local_models.get(st.session_state.selected_local_model_path,{})
|
| 1212 |
+
model_type = model_info.get('type'); model_name = os.path.basename(st.session_state.selected_local_model_path)
|
| 1213 |
+
if model_type != 'ocr': st.warning(f"Selected model ({model_name}) is type '{model_type}', not 'ocr'. Results may be poor.")
|
| 1214 |
+
else: st.info(f"Using Local OCR Model: {model_name}")
|
| 1215 |
+
else: st.warning("No local model selected.")
|
| 1216 |
+
|
| 1217 |
+
gallery_files_ocr_hf = get_gallery_files(['png', 'jpg', 'jpeg', 'pdf'])
|
| 1218 |
+
if not gallery_files_ocr_hf: st.warning("No images or PDFs in gallery.")
|
| 1219 |
+
else:
|
| 1220 |
+
selected_file_ocr_hf = st.selectbox("Select Image or PDF from Gallery for OCR", options=[""] + gallery_files_ocr_hf, format_func=lambda x: os.path.basename(x) if x else "Select a file...", key="ocr_select_file_hf")
|
| 1221 |
+
if selected_file_ocr_hf:
|
| 1222 |
+
st.write(f"Selected: {os.path.basename(selected_file_ocr_hf)}"); file_ext_ocr_hf = os.path.splitext(selected_file_ocr_hf)[1].lower(); image_to_ocr_hf = None; page_info_hf = ""
|
| 1223 |
+
try:
|
| 1224 |
+
if file_ext_ocr_hf in ['.png', '.jpg', '.jpeg']: image_to_ocr_hf = Image.open(selected_file_ocr_hf)
|
| 1225 |
+
elif file_ext_ocr_hf == '.pdf':
|
| 1226 |
+
doc = fitz.open(selected_file_ocr_hf)
|
| 1227 |
+
if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)); image_to_ocr_hf = Image.frombytes("RGB", [pix.width, pix.height], pix.samples); page_info_hf = " (Page 1)"
|
| 1228 |
+
else: st.warning("Selected PDF is empty.")
|
| 1229 |
+
doc.close()
|
| 1230 |
+
if image_to_ocr_hf:
|
| 1231 |
+
st.image(image_to_ocr_hf, caption=f"Image for OCR{page_info_hf}", use_container_width=True)
|
| 1232 |
+
if st.button("Run HF OCR on this Image π", key="ocr_run_button_hf"):
|
| 1233 |
+
if ocr_use_api == "Loaded Local OCR Model" and not st.session_state.selected_local_model_path: st.error("Cannot run locally: No local model selected.")
|
| 1234 |
+
else:
|
| 1235 |
+
output_ocr_file_hf = generate_filename(f"hf_ocr_{os.path.splitext(os.path.basename(selected_file_ocr_hf))[0]}", "txt"); st.session_state['processing']['ocr'] = True
|
| 1236 |
+
with st.spinner("Performing OCR with HF model..."): ocr_result_hf = asyncio.run(process_hf_ocr(image_to_ocr_hf, output_ocr_file_hf, use_api=ocr_use_api))
|
| 1237 |
+
st.session_state['processing']['ocr'] = False; st.text_area("OCR Result", ocr_result_hf, height=300, key="ocr_result_display_hf")
|
| 1238 |
+
if ocr_result_hf and not ocr_result_hf.startswith("Error") and not ocr_result_hf.startswith("["):
|
| 1239 |
+
entry = f"HF OCR: {selected_file_ocr_hf}{page_info_hf} -> {output_ocr_file_hf}"
|
| 1240 |
+
st.session_state['history'].append(entry)
|
| 1241 |
+
if len(ocr_result_hf) > 5: st.success(f"OCR output saved to {output_ocr_file_hf}"); st.markdown(get_download_link(output_ocr_file_hf, "text/plain", "Download OCR Text"), unsafe_allow_html=True); st.session_state['asset_checkboxes'][output_ocr_file_hf] = False; update_gallery() # Refresh sidebar
|
| 1242 |
+
else: st.warning("OCR output seems short/empty.")
|
| 1243 |
+
else: st.error(f"OCR failed. {ocr_result_hf}")
|
| 1244 |
+
except Exception as e: st.error(f"Error loading file for OCR: {e}")
|
| 1245 |
+
|
| 1246 |
+
# --- Tab 9: Test Image Gen (Diffusers) ---
|
| 1247 |
+
with tabs[8]:
|
| 1248 |
+
st.header("Test Image Generation (Diffusers) π¨")
|
| 1249 |
+
st.markdown("Generate images using Stable Diffusion models loaded locally via the Diffusers library.")
|
| 1250 |
+
if not _diffusers_available: st.error("Diffusers library is required.")
|
| 1251 |
+
else:
|
| 1252 |
+
local_diffusion_paths = get_local_model_paths("diffusion") # Check diffusion_models folder
|
| 1253 |
+
if not local_diffusion_paths: st.warning("No local diffusion models found. Download one using the 'Build Titan' tab."); selected_diffusion_model_path = None
|
| 1254 |
+
else: selected_diffusion_model_path = st.selectbox("Select Local Diffusion Model", options=[""] + local_diffusion_paths, format_func=lambda x: os.path.basename(x) if x else "Select...", key="imggen_diffusion_model_select")
|
| 1255 |
+
prompt_imggen_diff = st.text_area("Image Generation Prompt", "A photorealistic cat wearing sunglasses, studio lighting", key="imggen_prompt_diff")
|
| 1256 |
+
neg_prompt_imggen_diff = st.text_area("Negative Prompt (Optional)", "ugly, deformed, blurry, low quality", key="imggen_neg_prompt_diff")
|
| 1257 |
+
steps_imggen_diff = st.slider("Inference Steps", 10, 100, 25, key="imggen_steps"); guidance_imggen_diff = st.slider("Guidance Scale", 1.0, 20.0, 7.5, step=0.5, key="imggen_guidance")
|
| 1258 |
+
if st.button("Generate Image π", key="imggen_run_button_diff", disabled=not selected_diffusion_model_path):
|
| 1259 |
+
if not prompt_imggen_diff: st.warning("Please enter a prompt.")
|
| 1260 |
+
else:
|
| 1261 |
+
status_imggen = st.empty()
|
| 1262 |
+
try:
|
| 1263 |
+
status_imggen.info(f"Loading diffusion pipeline: {os.path.basename(selected_diffusion_model_path)}..."); device = "cuda" if _transformers_available and torch.cuda.is_available() else "cpu"; dtype = torch.float16 if device == "cuda" else torch.float32
|
| 1264 |
+
pipe = StableDiffusionPipeline.from_pretrained(selected_diffusion_model_path, torch_dtype=dtype).to(device); pipe.safety_checker = None # Optional
|
| 1265 |
+
status_imggen.info(f"Generating image on {device} ({dtype})..."); start_gen_time = time.time()
|
| 1266 |
+
gen_output = pipe(prompt=prompt_imggen_diff, negative_prompt=neg_prompt_imggen_diff or None, num_inference_steps=steps_imggen_diff, guidance_scale=guidance_imggen_diff)
|
| 1267 |
+
gen_image = gen_output.images[0]; elapsed_gen = int(time.time() - start_gen_time); status_imggen.success(f"Image generated in {elapsed_gen}s!")
|
| 1268 |
+
output_imggen_file_diff = generate_filename("diffusion_gen", "png"); gen_image.save(output_imggen_file_diff)
|
| 1269 |
+
st.image(gen_image, caption=f"Generated: {output_imggen_file_diff}", use_container_width=True)
|
| 1270 |
+
st.markdown(get_download_link(output_imggen_file_diff, "image/png", "Download Generated Image"), unsafe_allow_html=True)
|
| 1271 |
+
st.session_state['asset_checkboxes'][output_imggen_file_diff] = False; update_gallery() # Refresh sidebar
|
| 1272 |
+
st.session_state['history'].append(f"Diffusion Gen: '{prompt_imggen_diff[:30]}...' -> {output_imggen_file_diff}")
|
| 1273 |
+
except ImportError: st.error("Diffusers or Torch library not found.")
|
| 1274 |
+
except Exception as e: st.error(f"Image generation failed: {e}"); logger.error(f"Diffusion generation failed for {selected_diffusion_model_path}: {e}", exc_info=True)
|
| 1275 |
+
finally: if 'pipe' in locals(): del pipe; torch.cuda.empty_cache() if device == "cuda" else None # Clear VRAM
|
| 1276 |
+
|
| 1277 |
+
# --- Tab 10: Character Editor ---
|
| 1278 |
+
with tabs[9]:
|
| 1279 |
+
st.header("Character Editor π§βπ¨"); st.subheader("Create Your Character")
|
| 1280 |
+
load_characters(); existing_char_names = [c['name'] for c in st.session_state.get('characters', [])]
|
| 1281 |
+
form_key = f"character_form_{st.session_state.get('char_form_reset_key', 0)}"
|
| 1282 |
+
with st.form(key=form_key):
|
| 1283 |
+
st.markdown("**Create New Character**")
|
| 1284 |
+
if st.form_submit_button("Randomize Content π²"): st.session_state['char_form_reset_key'] += 1; st.rerun()
|
| 1285 |
+
rand_name, rand_gender, rand_intro, rand_greeting = randomize_character_content()
|
| 1286 |
+
name_char = st.text_input("Name (3-25 chars...)", value=rand_name, max_chars=25, key="char_name_input")
|
| 1287 |
+
gender_char = st.radio("Gender", ["Male", "Female"], index=["Male", "Female"].index(rand_gender), key="char_gender_radio")
|
| 1288 |
+
intro_char = st.text_area("Intro (Public description)", value=rand_intro, max_chars=300, height=100, key="char_intro_area")
|
| 1289 |
+
greeting_char = st.text_area("Greeting (First message)", value=rand_greeting, max_chars=300, height=100, key="char_greeting_area")
|
| 1290 |
+
tags_char = st.text_input("Tags (comma-separated)", "OC, friendly", key="char_tags_input")
|
| 1291 |
+
submitted = st.form_submit_button("Create Character β¨")
|
| 1292 |
+
if submitted:
|
| 1293 |
+
error = False; # Validation checks...
|
| 1294 |
+
if not (3 <= len(name_char) <= 25): st.error("Name must be 3-25 characters."); error = True
|
| 1295 |
+
if not re.match(r'^[a-zA-Z0-9 _-]+$', name_char): st.error("Name contains invalid characters."); error = True
|
| 1296 |
+
if name_char in existing_char_names: st.error(f"Name '{name_char}' already exists!"); error = True
|
| 1297 |
+
if not intro_char or not greeting_char: st.error("Intro/Greeting cannot be empty."); error = True
|
| 1298 |
+
if not error:
|
| 1299 |
+
tag_list = [tag.strip() for tag in tags_char.split(',') if tag.strip()]
|
| 1300 |
+
character_data = {"name": name_char, "gender": gender_char, "intro": intro_char, "greeting": greeting_char, "created_at": datetime.now(pytz.timezone("US/Central")).strftime('%Y-%m-%d %H:%M:%S %Z'), "tags": tag_list}
|
| 1301 |
+
if save_character(character_data): st.success(f"Character '{name_char}' created!"); st.session_state['char_form_reset_key'] += 1; st.rerun()
|
| 1302 |
+
|
| 1303 |
+
# --- Tab 11: Character Gallery ---
|
| 1304 |
+
with tabs[10]:
|
| 1305 |
+
st.header("Character Gallery πΌοΈ"); load_characters(); characters_list = st.session_state.get('characters', [])
|
| 1306 |
+
if not characters_list: st.warning("No characters created yet.")
|
| 1307 |
+
else:
|
| 1308 |
+
st.subheader(f"Your Characters ({len(characters_list)})"); search_term = st.text_input("Search Characters by Name", key="char_gallery_search")
|
| 1309 |
+
if search_term: characters_list = [c for c in characters_list if search_term.lower() in c['name'].lower()]
|
| 1310 |
+
cols_char_gallery = st.columns(3); chars_to_delete = []
|
| 1311 |
+
for idx, char in enumerate(characters_list):
|
| 1312 |
+
with cols_char_gallery[idx % 3], st.container(border=True):
|
| 1313 |
+
st.markdown(f"**{char['name']}**"); st.caption(f"Gender: {char.get('gender', 'N/A')}")
|
| 1314 |
+
st.markdown("**Intro:**"); st.markdown(f"> {char.get('intro', '')}")
|
| 1315 |
+
st.markdown("**Greeting:**"); st.markdown(f"> {char.get('greeting', '')}")
|
| 1316 |
+
st.caption(f"Tags: {', '.join(char.get('tags', ['N/A']))}"); st.caption(f"Created: {char.get('created_at', 'N/A')}")
|
| 1317 |
+
delete_key_char = f"delete_char_{char['name']}_{idx}";
|
| 1318 |
+
if st.button(f"Delete", key=delete_key_char, type="primary", help=f"Delete {char['name']}"): chars_to_delete.append(char['name']) # Shorten button label
|
| 1319 |
+
if chars_to_delete:
|
| 1320 |
+
current_characters = st.session_state.get('characters', []); updated_characters = [c for c in current_characters if c['name'] not in chars_to_delete]
|
| 1321 |
+
st.session_state['characters'] = updated_characters
|
| 1322 |
+
try:
|
| 1323 |
+
with open("characters.json", "w", encoding='utf-8') as f: json.dump(updated_characters, f, indent=2)
|
| 1324 |
+
logger.info(f"Deleted characters: {', '.join(chars_to_delete)}"); st.success(f"Deleted: {', '.join(chars_to_delete)}"); st.rerun()
|
| 1325 |
+
except IOError as e: logger.error(f"Failed to save characters.json after deletion: {e}"); st.error("Failed to update character file.")
|
| 1326 |
+
|
| 1327 |
+
# --- Footer and Persistent Sidebar Elements ------------
|
| 1328 |
+
st.sidebar.markdown("---")
|
| 1329 |
+
# Update Sidebar Gallery (Call this at the end to reflect all changes)
|
| 1330 |
+
update_gallery()
|
| 1331 |
+
|
| 1332 |
+
# Action Logs in Sidebar
|
| 1333 |
+
st.sidebar.subheader("Action Logs π")
|
| 1334 |
+
log_expander = st.sidebar.expander("View Logs", expanded=False)
|
| 1335 |
+
with log_expander:
|
| 1336 |
+
# Display logs in reverse order (newest first)
|
| 1337 |
+
log_text = "\n".join([f"{record.levelname}: {record.message}" for record in reversed(log_records)])
|
| 1338 |
+
st.code(log_text, language='log')
|
| 1339 |
+
|
| 1340 |
+
# History in Sidebar
|
| 1341 |
+
st.sidebar.subheader("Session History π")
|
| 1342 |
+
history_expander = st.sidebar.expander("View History", expanded=False)
|
| 1343 |
+
with history_expander:
|
| 1344 |
+
for entry in reversed(st.session_state.get("history", [])):
|
| 1345 |
+
if entry: history_expander.write(f"- {entry}")
|
| 1346 |
+
|
| 1347 |
+
st.sidebar.markdown("---")
|
| 1348 |
+
st.sidebar.info("Using Hugging Face models for AI tasks.")
|
| 1349 |
+
st.sidebar.caption("App Modified by AI Assistant")
|