Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
|
5 |
+
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
|
6 |
+
|
7 |
+
st.title("AutoML Streamlit App")
|
8 |
+
|
9 |
+
# Upload a CSV dataset
|
10 |
+
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"])
|
11 |
+
if uploaded_file is not None:
|
12 |
+
# Load the dataset and display the first 5 rows
|
13 |
+
df = pd.read_csv(uploaded_file)
|
14 |
+
st.dataframe(df.head())
|
15 |
+
|
16 |
+
# Generate a treemap or sunburst plot based on data types
|
17 |
+
numerical_cols = df.select_dtypes(include=["float", "int"]).columns
|
18 |
+
categorical_cols = df.select_dtypes(include=["object"]).columns
|
19 |
+
|
20 |
+
if len(numerical_cols) >= 2:
|
21 |
+
fig = px.scatter_matrix(df, dimensions=numerical_cols)
|
22 |
+
st.plotly_chart(fig)
|
23 |
+
elif len(categorical_cols) >= 2:
|
24 |
+
fig = px.treemap(df, path=categorical_cols)
|
25 |
+
st.plotly_chart(fig)
|
26 |
+
else:
|
27 |
+
fig = px.sunburst(df, path=categorical_cols + numerical_cols)
|
28 |
+
st.plotly_chart(fig)
|