Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
import gradio as gr
|
4 |
+
from ragatouille import RAGPretrainedModel
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
import re
|
7 |
+
from datetime import datetime
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
|
11 |
+
import arxiv
|
12 |
+
from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
|
13 |
+
|
14 |
+
retrieve_results = 10
|
15 |
+
show_examples = False
|
16 |
+
llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None']
|
17 |
+
|
18 |
+
generate_kwargs = dict(
|
19 |
+
temperature = None,
|
20 |
+
max_new_tokens = 512,
|
21 |
+
top_p = None,
|
22 |
+
do_sample = False,
|
23 |
+
)
|
24 |
+
|
25 |
+
## RAG Model
|
26 |
+
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
|
27 |
+
|
28 |
+
try:
|
29 |
+
gr.Info("Setting up retriever, please wait...")
|
30 |
+
rag_initial_output = RAG.search("what is Mistral?", k = 1)
|
31 |
+
gr.Info("Retriever working successfully!")
|
32 |
+
|
33 |
+
except:
|
34 |
+
gr.Warning("Retriever not working!")
|
35 |
+
|
36 |
+
## Header
|
37 |
+
mark_text = '# 🩺🔍 Search Results\n'
|
38 |
+
header_text = "## Arxiv Paper Summary With QA Retrieval Augmented Generation \n"
|
39 |
+
|
40 |
+
try:
|
41 |
+
with open("README.md", "r") as f:
|
42 |
+
mdfile = f.read()
|
43 |
+
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
|
44 |
+
match = re.search(date_pattern, mdfile)
|
45 |
+
date = match.group().split(': ')[1]
|
46 |
+
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
|
47 |
+
header_text += f'Index Last Updated: {formatted_date}\n'
|
48 |
+
index_info = f"Semantic Search - up to {formatted_date}"
|
49 |
+
except:
|
50 |
+
index_info = "Semantic Search"
|
51 |
+
|
52 |
+
database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
|
53 |
+
|
54 |
+
## Arxiv API
|
55 |
+
arx_client = arxiv.Client()
|
56 |
+
is_arxiv_available = True
|
57 |
+
check_arxiv_result = get_arxiv_live_search("What is Self Rewarding AI and how can it be used in Multi-Agent Systems?", arx_client, retrieve_results)
|
58 |
+
if len(check_arxiv_result) == 0:
|
59 |
+
is_arxiv_available = False
|
60 |
+
print("Arxiv search not working, switching to default search ...")
|
61 |
+
database_choices = [index_info]
|
62 |
+
|
63 |
+
## Show examples (disabled)
|
64 |
+
if show_examples:
|
65 |
+
with open("sample_outputs.json", "r") as f:
|
66 |
+
sample_outputs = json.load(f)
|
67 |
+
output_placeholder = sample_outputs['output_placeholder']
|
68 |
+
md_text_initial = sample_outputs['search_placeholder']
|
69 |
+
|
70 |
+
else:
|
71 |
+
output_placeholder = None
|
72 |
+
md_text_initial = ''
|
73 |
+
|
74 |
+
def rag_cleaner(inp):
|
75 |
+
rank = inp['rank']
|
76 |
+
title = inp['document_metadata']['title']
|
77 |
+
content = inp['content']
|
78 |
+
date = inp['document_metadata']['_time']
|
79 |
+
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
|
80 |
+
|
81 |
+
def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
|
82 |
+
if formatted:
|
83 |
+
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
|
84 |
+
message = f"Question: {question}"
|
85 |
+
|
86 |
+
if 'mistralai' in llm_model_picked:
|
87 |
+
return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
|
88 |
+
|
89 |
+
elif 'gemma' in llm_model_picked:
|
90 |
+
return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
|
91 |
+
|
92 |
+
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
|
93 |
+
|
94 |
+
def get_references(question, retriever, k = retrieve_results):
|
95 |
+
rag_out = retriever.search(query=question, k=k)
|
96 |
+
return rag_out
|
97 |
+
|
98 |
+
def get_rag(message):
|
99 |
+
return get_references(message, RAG)
|
100 |
+
|
101 |
+
def SaveResponseAndRead(result):
|
102 |
+
documentHTML5='''
|
103 |
+
<!DOCTYPE html>
|
104 |
+
<html>
|
105 |
+
<head>
|
106 |
+
<title>Read It Aloud</title>
|
107 |
+
<script type="text/javascript">
|
108 |
+
function readAloud() {
|
109 |
+
const text = document.getElementById("textArea").value;
|
110 |
+
const speech = new SpeechSynthesisUtterance(text);
|
111 |
+
window.speechSynthesis.speak(speech);
|
112 |
+
}
|
113 |
+
</script>
|
114 |
+
</head>
|
115 |
+
<body>
|
116 |
+
<h1>🔊 Read It Aloud</h1>
|
117 |
+
<textarea id="textArea" rows="10" cols="80">
|
118 |
+
'''
|
119 |
+
documentHTML5 = documentHTML5 + result
|
120 |
+
documentHTML5 = documentHTML5 + '''
|
121 |
+
</textarea>
|
122 |
+
<br>
|
123 |
+
<button onclick="readAloud()">🔊 Read Aloud</button>
|
124 |
+
</body>
|
125 |
+
</html>
|
126 |
+
'''
|
127 |
+
gr.HTML(documentHTML5)
|
128 |
+
|
129 |
+
def save_search_results(prompt, results):
|
130 |
+
filename = re.sub(r'[^\w\-_\. ]', '_', prompt) + ".txt"
|
131 |
+
with open(filename, "w") as f:
|
132 |
+
f.write(f"# {prompt}\n\n")
|
133 |
+
f.write(results)
|
134 |
+
|
135 |
+
def get_past_searches():
|
136 |
+
txt_files = [f for f in os.listdir(".") if f.endswith(".txt") and f != "requirements.txt"]
|
137 |
+
return txt_files
|
138 |
+
|
139 |
+
with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
140 |
+
header = gr.Markdown(header_text)
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column():
|
144 |
+
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
|
145 |
+
|
146 |
+
with gr.Accordion("Advanced Settings", open=False):
|
147 |
+
with gr.Row(equal_height = True):
|
148 |
+
llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
|
149 |
+
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
|
150 |
+
database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
|
151 |
+
stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
|
152 |
+
|
153 |
+
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
|
154 |
+
input = gr.Textbox(show_label = False, visible = False)
|
155 |
+
gr_md = gr.Markdown(mark_text + md_text_initial)
|
156 |
+
|
157 |
+
with gr.Column():
|
158 |
+
past_searches = gr.Dropdown(choices=get_past_searches(), label="Past Searches")
|
159 |
+
past_search_content = gr.Textbox(label="Past Search Content", visible=False)
|
160 |
+
|
161 |
+
def update_past_search_content(past_search):
|
162 |
+
if past_search:
|
163 |
+
with open(past_search, "r") as f:
|
164 |
+
content = f.read()
|
165 |
+
return gr.Textbox.update(value=content, visible=True)
|
166 |
+
else:
|
167 |
+
return gr.Textbox.update(visible=False)
|
168 |
+
|
169 |
+
past_searches.change(update_past_search_content, past_searches, past_search_content)
|
170 |
+
|
171 |
+
def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
|
172 |
+
prompt_text_from_data = ""
|
173 |
+
database_to_use = database_choice
|
174 |
+
if database_choice == index_info:
|
175 |
+
rag_out = get_rag(message)
|
176 |
+
else:
|
177 |
+
arxiv_search_success = True
|
178 |
+
try:
|
179 |
+
rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
|
180 |
+
if len(rag_out) == 0:
|
181 |
+
arxiv_search_success = False
|
182 |
+
except:
|
183 |
+
arxiv_search_success = False
|
184 |
+
|
185 |
+
if not arxiv_search_success:
|
186 |
+
gr.Warning("Arxiv Search not working, switching to semantic search ...")
|
187 |
+
rag_out = get_rag(message)
|
188 |
+
database_to_use = index_info
|
189 |
+
|
190 |
+
md_text_updated = mark_text
|
191 |
+
for i in range(retrieve_results):
|
192 |
+
rag_answer = rag_out[i]
|
193 |
+
if i < llm_results_use:
|
194 |
+
md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
|
195 |
+
prompt_text_from_data += f"{i+1}. {prompt_text}"
|
196 |
+
else:
|
197 |
+
md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
|
198 |
+
md_text_updated += md_text_paper
|
199 |
+
prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
|
200 |
+
save_search_results(message, md_text_updated)
|
201 |
+
return md_text_updated, prompt, gr.Dropdown.update(choices=get_past_searches())
|
202 |
+
|
203 |
+
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False):
|
204 |
+
model_disabled_text = "LLM Model is disabled"
|
205 |
+
output = ""
|
206 |
+
|
207 |
+
if llm_model_picked == 'None':
|
208 |
+
if stream_outputs:
|
209 |
+
for out in model_disabled_text:
|
210 |
+
output += out
|
211 |
+
yield output
|
212 |
+
return output
|
213 |
+
else:
|
214 |
+
return model_disabled_text
|
215 |
+
|
216 |
+
client = InferenceClient(llm_model_picked)
|
217 |
+
try:
|
218 |
+
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
|
219 |
+
|
220 |
+
except:
|
221 |
+
gr.Warning("LLM Inference rate limit reached, try again later!")
|
222 |
+
return ""
|
223 |
+
|
224 |
+
if stream_outputs:
|
225 |
+
for response in stream:
|
226 |
+
output += response
|
227 |
+
SaveResponseAndRead(response)
|
228 |
+
yield output
|
229 |
+
return output
|
230 |
+
else:
|
231 |
+
return stream
|
232 |
+
|
233 |
+
msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input, past_searches]).success(ask_llm, [input, llm_model, stream_results], output_text)
|
234 |
+
|
235 |
+
demo.queue().launch()
|