Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import glob | |
import re | |
import base64 | |
import pytz | |
import time | |
import streamlit.components.v1 as components | |
from urllib.parse import quote | |
from gradio_client import Client | |
from datetime import datetime | |
# 🌳🤖 AIKnowledgeTreeBuilder - Because every app needs a good costume! | |
Site_Name = 'AI Knowledge Tree Builder 📈🌿 Grow Smarter with Every Click' | |
title = "🌳✨AI Knowledge Tree Builder🛠️🤓" | |
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' | |
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' | |
icons = '🌳✨🛠️🤓' | |
SidebarOutline=""" | |
This AI is designed with the following: | |
📱 Portability - Universal access via any device & link sharing | |
⚡ Speed of Build - Rapid deployments (< 2min to production) | |
🔗 Linkiness - Programmatic access to major AI knowledge sources | |
🎯 Abstractive - Core stays lean by isolating high-maintenance components | |
🧠 Memory - Shareable flows with deep-linked research paths | |
👤 Personalized - Rapidly adapts knowledge base to user needs | |
""" | |
st.set_page_config( | |
page_title=title, | |
page_icon=icons, | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': helpURL, | |
'Report a bug': bugURL, | |
'About': title | |
} | |
) | |
st.sidebar.markdown(SidebarOutline) | |
# Initialize session state variables | |
if 'selected_file' not in st.session_state: | |
st.session_state.selected_file = None | |
if 'view_mode' not in st.session_state: | |
st.session_state.view_mode = 'view' | |
if 'files' not in st.session_state: | |
st.session_state.files = [] | |
AITopicsToInnovate1=""" | |
1. Major AI Industry Players 🌐 | |
1. Research Leaders 🎯 | |
- OpenAI: GPT-4 DALL-E Foundation Models 🔵 | |
- Google: PaLM Gemini LLMs 🟦 | |
- Anthropic: Claude Constitutional AI ⚡ | |
- Meta: LLaMA Open Source LLMs 👤 | |
- xAI: Grok Conversational AI 🤖 | |
2. Technical AI Development 🛠️ | |
1. Architecture Advances 💫 | |
- Transformer Models Attention Mechanisms 🧠 | |
- Mixture of Experts MoE Architecture 🎪 | |
- Sparse Neural Networks 🕸️ | |
- Multi-modal LLM Systems 🌈 | |
- Flash Attention Optimization ⚔️ | |
2. Training Methodologies 📚 | |
- LLM Supervised Fine-tuning 👨🏫 | |
- RLHF Reward Models 🤝 | |
- Constitutional AI Training 📜 | |
- RLAIF Feedback Models 🔄 | |
- Synthetic Data LLM Training 🎲 | |
- Chain of Thought Prompting 🧩 | |
- Tree of Thoughts Reasoning 🌳 | |
3. Post-Training Implementation 🔧 | |
- Neural Network Distillation 🧪 | |
- LLM Quantization Methods 📊 | |
- Neural Network Pruning ✂️ | |
- Knowledge Distillation Transfer 📖 | |
- Few-shot LLM Learning 🎯 | |
3. Mechanistic Interpretability 🔬 | |
1. Core Concepts 💡 | |
- Neural Network Growth Analysis 🌱 | |
- LLM Architecture Analysis 🏗️ | |
- Training Loss Optimization 🎨 | |
- Neural Network Analogies 🧬 | |
2. Technical Features 📐 | |
- LLM Linear Representations ➡️ | |
- Neural Vector Arithmetic 🔢 | |
- Neural Activation Patterns 🌊 | |
- LLM Feature Detection 🔍 | |
- Neural Sparse Autoencoders 🎭 | |
3. Network Analysis 🕵️ | |
- LLM Induction Heads 👀 | |
- Transformer Attention Analysis 🎪 | |
- Neural Circuit Analysis 🔌 | |
- LLM Feature Visualization 📈 | |
- Neural Concept Directions 🎳 | |
4. Future AI Developments 🚀 | |
1. AGI Timeline ⏰ | |
- AGI Capability Projections 📅 | |
- Neural Hardware Scaling 💾 | |
- LLM Training Data Limits 📉 | |
- AI Compute Resources 🗺️ | |
2. Integration Fields 🎡 | |
- AI Biology Integration 🔮 | |
- AI Drug Discovery Systems 💊 | |
- AI Clinical Trial Analysis 🏥 | |
- AI Code Generation 🤹 | |
- AI Scientific Discovery 🧮 | |
5. Industry Best Practices 💎 | |
1. AI Team Building 🏢 | |
- AI Talent Development 👥 | |
- AI Research Alignment 🎪 | |
- AI Team Scaling 📊 | |
- AI Research Culture 🌟 | |
2. AI Research Qualities 🎓 | |
- AI Research Methodology 🧭 | |
- AI Experimentation Protocols 🗝️ | |
- AI Innovation Thinking 💫 | |
- AI Testing Framework ⚖️ | |
3. AI Safety Standards 🛡️ | |
- LLM Behavioral Specifications 📋 | |
- AI Safety Guidelines 🎮 | |
- AI Ethics Framework ⛑️ | |
- AI Industry Standards 🤲 | |
6. Emerging Research Areas 🔮 | |
1. Technical Focus 🎯 | |
- LLM Long Context Learning ⏳ | |
- LLM Multi-agent Interaction 👾 | |
- AI Evaluation Metrics 📌 | |
- Neural Interpretability Methods 🔭 | |
2. AI Applications 💼 | |
- AI Automated Research 🧫 | |
- AI Code Synthesis ⌨️ | |
- AI Biological Modeling 🧯 | |
- AI Medical Diagnostics 💉 | |
7. Model Intelligence 🧿 | |
1. LLM System Development 🎪 | |
- LLM Prompt Engineering 📝 | |
- LLM Response Generation ♟️ | |
- LLM Behavioral Training 🎹 | |
- LLM Personality Development 🎪 | |
2. LLM User Interaction 🎭 | |
- LLM Autonomy Alignment 🎪 | |
- LLM Safety Boundaries 🔒 | |
- LLM Communication Patterns 🗣️ | |
- LLM Performance Tuning 🎢 | |
""" | |
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """ | |
# Active Multiplayer Games 2024 🎮 | |
## 1 Traditional MMORPGs 🗡️ | |
### 1.1 Major MMORPGs 🏰 | |
- Final Fantasy XIV Dawntrail 2024 ⚔️ | |
- Advanced Job System Rework 🎭 | |
- Cross Platform Integration 🎪 | |
- New Housing Districts 🏘️ | |
- World of Warcraft 2024 Season 🐲 | |
- Dragon Combat System 🦋 | |
- Cross Faction Features ⚜️ | |
- Mythic Plus Seasons 🏆 | |
- Elder Scrolls Online Gold Road 🗝️ | |
- Dynamic Event System 🌟 | |
- Housing Construction 🏛️ | |
- Champion System 2.0 📊 | |
- Lost Ark Western T4 Update ⚡ | |
- Legion Raid Content 👾 | |
- Island Adventure System 🏝️ | |
- Class Balance Rework 🔰 | |
- Black Desert Online Remaster 🎪 | |
- Combat System Update 🎯 | |
- Node Empire System 🏹 | |
- Life Skill Evolution 🌳 | |
### 1.2 Emerging MMORPGs 🌠 | |
- Throne and Liberty Launch 👑 | |
- Weather Combat System 🌦️ | |
- Territory Wars 🗺️ | |
- Transformation System 🐉 | |
- Pax Dei Medieval MMO ⚔️ | |
- City Management 🏰 | |
- Faith Based Magic ✨ | |
- Global Trading 💎 | |
- Blue Protocol Western Release 🌌 | |
- Action Combat Design 🎭 | |
- Class Change System ⚡ | |
- Dungeon Scaling 🗼 | |
## 2 Survival MMOs 🏹 | |
### 2.1 Established Survival 🛡️ | |
- Rust 2024 Updates 🦾 | |
- Electricity Programming 💡 | |
- Vehicle System Update 🚗 | |
- Automated Defenses ⚡ | |
- ARK Survival Ascended 🦖 | |
- Cross ARK System 🌐 | |
- Creature Breeding 2.0 🥚 | |
- Base Defense Network 🏰 | |
- DayZ 2024 Content 🧟 | |
- Medical System Update 💉 | |
- Disease Mechanics 🦠 | |
- Base Building 2.0 🏗️ | |
- 7 Days to Die Alpha 22 🏚️ | |
- Physics Engine Update 💥 | |
- AI Pathfinding System 🧠 | |
- Vehicle Customization 🚙 | |
### 2.2 New Survival MMOs 🆕 | |
- Once Human Launch 🧬 | |
- Mutation System 🧪 | |
- Base Building Tech 🏭 | |
- Weather Impact System 🌪️ | |
- Nightingale Release 🌙 | |
- Portal Realm System 🌌 | |
- Victorian Crafting 🎩 | |
- Fae World Design 🧚 | |
## 3 Hybrid MMOs 🎯 | |
### 3.1 Looter Shooters 🔫 | |
- Destiny 2 2024 Season 🛸 | |
- Build System 3.0 🛠️ | |
- Raid Mechanics ⭐ | |
- Season Structure 📈 | |
- The Division 2 Year 6 🏙️ | |
- Loadout Expansion 🎒 | |
- Dark Zone Update 🌃 | |
- Manhunt System 🎯 | |
- Warframe 2024 Update 🤖 | |
- Movement Tech 2.0 🏃 | |
- Mod System Rework ⚙️ | |
- Open World Expansion 🌅 | |
### 3.2 Action RPG MMOs 💫 | |
- Path of Exile 2 Beta 💎 | |
- Gem System Rework 💫 | |
- New Skill Tree 🌲 | |
- League Content 🏆 | |
- Diablo 4 Season Structure 😈 | |
- Season Journey System 🎭 | |
- World Boss Events 🐲 | |
- PvP Territories 🗡️ | |
## 4 Simulation MMOs 🌍 | |
### 4.1 Space Simulation 🚀 | |
- EVE Online 2024 🛸 | |
- Corporation Warfare 🏴☠️ | |
- Market System Update 📊 | |
- Fleet Operations 🚢 | |
- Elite Dangerous Update 🌌 | |
- Ground Combat System 👨🚀 | |
- Fleet Carrier Content ⭐ | |
- Planet Exploration 🪐 | |
- Star Citizen Alpha 🛸 | |
- Persistent Universe 🌍 | |
- Ship Combat Update ⚔️ | |
- Trading System 2.0 💰 | |
### 4.2 World Simulation 🌎 | |
- New World Eternal 🗺️ | |
- Territory System 🏰 | |
- Crafting Update 🛠️ | |
- War System 2.0 ⚔️ | |
- Albion Online 2024 🏹 | |
- Guild Warfare Update ⚔️ | |
- Economy System 2.0 💰 | |
- Territory Control 🏰 | |
## 5 Unique Multiplayer Games 🎲 | |
### 5.1 Adventure Multiplayer 🗺️ | |
- Sea of Thieves 2024 ⛵ | |
- Ship Combat Physics 🌊 | |
- Crew Management 🏴☠️ | |
- World Events 🎪 | |
- Valheim Updates ⚡ | |
- Building System 2.0 🏗️ | |
- Boss Progression 👹 | |
- Exploration Update 🗺️ | |
### 5.2 Combat Focused 🗡️ | |
- Mordhau 2024 ⚔️ | |
- Combat Physics Update 🤺 | |
- Map System Rework 🏰 | |
- Tournament System 🏆 | |
- For Honor Year 8 🛡️ | |
- Faction War Update ⚔️ | |
- Hero Rework System 🎭 | |
- Seasonal Content 🌟 | |
## 6 Upcoming 2024 Games 🔮 | |
### 6.1 Launching Soon 📅 | |
- Gray Zone Warfare 🎖️ | |
- Tactical Systems 🎯 | |
- Base Operations 🏢 | |
- Territory Control 🗺️ | |
- Fractured Online 🌟 | |
- City Building 🏗️ | |
- Knowledge System 📚 | |
- Player Economy 💰 | |
### 6.2 In Development 🛠️ | |
- Ashes of Creation 🏰 | |
- Node System 🌱 | |
- Castle Siege ⚔️ | |
- Caravan System 🐪 | |
- Pantheon Rise of the Fallen 🌅 | |
- Climate System 🌦️ | |
- Group Content Focus 👥 | |
- Perception System 👁️ | |
""" | |
def get_display_name(filename): | |
"""Extract text from parentheses or return filename as is.""" | |
match = re.search(r'\((.*?)\)', filename) | |
if match: | |
return match.group(1) | |
return filename | |
def get_time_display(filename): | |
"""Extract just the time portion from the filename.""" | |
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) | |
if time_match: | |
return time_match.group(1) | |
return filename | |
def sanitize_filename(text): | |
"""Create a safe filename from text while preserving spaces.""" | |
# First replace unsafe characters with spaces | |
safe_text = re.sub(r'[^\w\s-]', ' ', text) | |
# Remove any multiple spaces | |
safe_text = re.sub(r'\s+', ' ', safe_text) | |
# Trim leading/trailing spaces | |
safe_text = safe_text.strip() | |
return safe_text[:50] # Limit length to 50 chars | |
def generate_timestamp_filename(query): | |
"""Generate filename with format: 1103AM 11032024 (Query).md""" | |
# Get current time in Central timezone | |
central = pytz.timezone('US/Central') | |
current_time = datetime.now(central) | |
# Format the timestamp parts | |
time_str = current_time.strftime("%I%M%p") # 1103AM format | |
date_str = current_time.strftime("%m%d%Y") # 11032024 format | |
# Clean up the query for filename - now preserving spaces | |
safe_query = sanitize_filename(query) | |
# Construct filename: "1103AM 11032024 (Input with spaces).md" | |
filename = f"{time_str} {date_str} ({safe_query}).md" | |
return filename | |
def delete_file(file_path): | |
"""Delete a file and return success status.""" | |
try: | |
os.remove(file_path) | |
return True | |
except Exception as e: | |
st.error(f"Error deleting file: {e}") | |
return False | |
def save_ai_interaction(query, ai_result, is_rerun=False): | |
"""Save AI interaction to a markdown file with new filename format.""" | |
filename = generate_timestamp_filename(query) | |
# Format the content differently for rerun vs normal query | |
if is_rerun: | |
content = f"""# Rerun Query | |
Original file content used for rerun: | |
{query} | |
# AI Response (Fun Version) | |
{ai_result} | |
""" | |
else: | |
content = f"""# Query: {query} | |
## AI Response | |
{ai_result} | |
""" | |
# Save to file | |
try: | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(content) | |
return filename | |
except Exception as e: | |
st.error(f"Error saving file: {e}") | |
return None | |
def get_file_download_link(file_path): | |
"""Generate a base64 download link for a file.""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
b64 = base64.b64encode(content.encode()).decode() | |
filename = os.path.basename(file_path) | |
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>' | |
except Exception as e: | |
st.error(f"Error creating download link: {e}") | |
return None | |
def extract_terms(markdown_text): | |
"""Parse markdown text and extract terms.""" | |
lines = markdown_text.strip().split('\n') | |
terms = [] | |
for line in lines: | |
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip() | |
if line: | |
terms.append(line) | |
return terms | |
def extract_urls(text): | |
try: | |
date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})') | |
abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)') | |
pdf_link_pattern = re.compile(r'\[⬇️\]\((https://arxiv\.org/pdf/\d+\.\d+)\)') | |
title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]') | |
date_matches = date_pattern.findall(text) | |
abs_link_matches = abs_link_pattern.findall(text) | |
pdf_link_matches = pdf_link_pattern.findall(text) | |
title_matches = title_pattern.findall(text) | |
# markdown with the extracted fields | |
markdown_text = "" | |
for i in range(len(date_matches)): | |
date = date_matches[i] | |
title = title_matches[i] | |
abs_link = abs_link_matches[i][1] | |
pdf_link = pdf_link_matches[i] | |
markdown_text += f"**Date:** {date}\n\n" | |
markdown_text += f"**Title:** {title}\n\n" | |
markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n" | |
markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n" | |
markdown_text += "---\n\n" | |
return markdown_text | |
except: | |
st.write('.') | |
return '' | |
# HTML5 based Speech Synthesis (Text to Speech in Browser) | |
def SpeechSynthesis(result): | |
documentHTML5=''' | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Read It Aloud</title> | |
<script type="text/javascript"> | |
function readAloud() { | |
const text = document.getElementById("textArea").value; | |
const speech = new SpeechSynthesisUtterance(text); | |
window.speechSynthesis.speak(speech); | |
} | |
</script> | |
</head> | |
<body> | |
<h1>🔊 Read It Aloud</h1> | |
<textarea id="textArea" rows="10" cols="80"> | |
''' | |
documentHTML5 = documentHTML5 + result | |
documentHTML5 = documentHTML5 + ''' | |
</textarea> | |
<br> | |
<button onclick="readAloud()">🔊 Read Aloud</button> | |
</body> | |
</html> | |
''' | |
components.html(documentHTML5, width=1280, height=300) | |
def display_terms_with_links(terms): | |
"""Display terms with various search links.""" | |
search_urls = { | |
"📚📖ArXiv": lambda k: f"/?q={quote(k)}", # Academic/paper theme | |
"🔮<sup>Google</sup>": lambda k: f"https://www.google.com/search?q={quote(k)}", # Crystal ball for search | |
"📺<sup>Youtube</sup>": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", # TV for videos | |
"🔭<sup>Bing</sup>": lambda k: f"https://www.bing.com/search?q={quote(k)}", # Telescope for search | |
"💡<sup>Truth</sup>": lambda k: f"https://truthsocial.com/search?q={quote(k)}", # Light bulb for insight | |
"📱X": lambda k: f"https://twitter.com/search?q={quote(k)}", # Phone for social media | |
} | |
for term in terms: | |
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) | |
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True) | |
def search_arxiv(query): | |
st.write("Performing AI Lookup...") | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
result1 = client.predict( | |
prompt=query, | |
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
stream_outputs=True, | |
api_name="/ask_llm" | |
) | |
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") | |
st.markdown(result1) | |
result2 = client.predict( | |
prompt=query, | |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", | |
stream_outputs=True, | |
api_name="/ask_llm" | |
) | |
st.markdown("### Mistral-7B-Instruct-v0.2 Result") | |
st.markdown(result2) | |
combined_result = f"{result1}\n\n{result2}" | |
#return combined_result | |
return responseall | |
def perform_ai_lookup(query): | |
start_time = time.strftime("%Y-%m-%d %H:%M:%S") | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
response1 = client.predict( | |
query, | |
20, | |
"Semantic Search", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
api_name="/update_with_rag_md" | |
) | |
Question = '### 🔎 ' + query + '\r\n' # Format for markdown display with links | |
References = response1[0] | |
ReferenceLinks = extract_urls(References) | |
RunSecondQuery = True | |
results='' | |
if RunSecondQuery: | |
# Search 2 - Retrieve the Summary with Papers Context and Original Query | |
response2 = client.predict( | |
query, | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
True, | |
api_name="/ask_llm" | |
) | |
if len(response2) > 10: | |
Answer = response2 | |
SpeechSynthesis(Answer) | |
# Restructure results to follow format of Question, Answer, References, ReferenceLinks | |
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks | |
st.markdown(results) | |
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete') | |
end_time = time.strftime("%Y-%m-%d %H:%M:%S") | |
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S")) | |
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S")) | |
elapsed_seconds = end_timestamp - start_timestamp | |
st.write(f"Start time: {start_time}") | |
st.write(f"Finish time: {end_time}") | |
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds") | |
filename = generate_filename(query, "md") | |
create_file(filename, query, results, should_save) | |
return results | |
def display_file_content(file_path): | |
"""Display file content with editing capabilities.""" | |
try: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
if st.session_state.view_mode == 'view': | |
# Display as markdown when viewing | |
st.markdown(content) | |
else: | |
# Edit functionality | |
edited_content = st.text_area( | |
"Edit content", | |
content, | |
height=400, | |
key=f"edit_{os.path.basename(file_path)}" | |
) | |
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): | |
try: | |
with open(file_path, 'w', encoding='utf-8') as f: | |
f.write(edited_content) | |
st.success(f"Successfully saved changes to {file_path}") | |
except Exception as e: | |
st.error(f"Error saving changes: {e}") | |
except Exception as e: | |
st.error(f"Error reading file: {e}") | |
def file_management_sidebar(): | |
"""Redesigned sidebar with improved layout and additional functionality.""" | |
st.sidebar.title("📁 File Management") | |
# Get list of .md files excluding README.md | |
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] | |
md_files.sort() | |
st.session_state.files = md_files | |
if md_files: | |
st.sidebar.markdown("### Saved Files") | |
for idx, file in enumerate(md_files): | |
st.sidebar.markdown("---") # Separator between files | |
# Display time | |
st.sidebar.text(get_time_display(file)) | |
# Display download link with simplified text | |
download_link = get_file_download_link(file) | |
if download_link: | |
st.sidebar.markdown(download_link, unsafe_allow_html=True) | |
# Action buttons in a row | |
col1, col2, col3, col4 = st.sidebar.columns(4) | |
with col1: | |
if st.button("📄 View", key=f"view_{idx}"): | |
st.session_state.selected_file = file | |
st.session_state.view_mode = 'view' | |
with col2: | |
if st.button("✏️ Edit", key=f"edit_{idx}"): | |
st.session_state.selected_file = file | |
st.session_state.view_mode = 'edit' | |
with col3: | |
if st.button("🔄 Rerun", key=f"rerun_{idx}"): | |
try: | |
with open(file, 'r', encoding='utf-8') as f: | |
content = f.read() | |
# Prepare the prompt with the prefix | |
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: | |
""" | |
full_prompt = rerun_prefix + content | |
# Perform AI lookup and save results | |
ai_result = perform_ai_lookup(full_prompt) | |
saved_file = save_ai_interaction(content, ai_result, is_rerun=True) | |
if saved_file: | |
st.success(f"Created fun version in {saved_file}") | |
st.session_state.selected_file = saved_file | |
st.session_state.view_mode = 'view' | |
except Exception as e: | |
st.error(f"Error during rerun: {e}") | |
with col4: | |
if st.button("🗑️ Delete", key=f"delete_{idx}"): | |
if delete_file(file): | |
st.success(f"Deleted {file}") | |
st.rerun() | |
else: | |
st.error(f"Failed to delete {file}") | |
st.sidebar.markdown("---") | |
# Option to create a new markdown file | |
if st.sidebar.button("📝 Create New Note"): | |
filename = generate_timestamp_filename("New Note") | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write("# New Markdown File\n") | |
st.sidebar.success(f"Created: {filename}") | |
st.session_state.selected_file = filename | |
st.session_state.view_mode = 'edit' | |
else: | |
st.sidebar.write("No markdown files found.") | |
if st.sidebar.button("📝 Create First Note"): | |
filename = generate_timestamp_filename("New Note") | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write("# New Markdown File\n") | |
st.sidebar.success(f"Created: {filename}") | |
st.session_state.selected_file = filename | |
st.session_state.view_mode = 'edit' | |
def main(): | |
st.title("AI Knowledge Tree Builder 🧠🌱 Cultivate Your AI Mindscape!") | |
# Process query parameters and AI lookup first | |
query_params = st.query_params | |
query = query_params.get('q', '') | |
show_initial_content = True # Flag to control initial content display | |
# First priority: Handle active query | |
if query: | |
show_initial_content = False # Hide initial content when showing query results | |
st.write(f"### Search query received: {query}") | |
try: | |
ai_result = perform_ai_lookup(query) | |
# Save the interaction | |
saved_file = save_ai_interaction(query, ai_result) | |
if saved_file: | |
st.success(f"Saved interaction to {saved_file}") | |
st.session_state.selected_file = saved_file | |
st.session_state.view_mode = 'view' | |
except Exception as e: | |
st.error(f"Error during AI lookup: {e}") | |
# File management sidebar | |
file_management_sidebar() | |
# Second priority: Display selected file content if any | |
if st.session_state.selected_file: | |
show_initial_content = False # Hide initial content when showing file content | |
if os.path.exists(st.session_state.selected_file): | |
st.markdown(f"### Current File: {st.session_state.selected_file}") | |
display_file_content(st.session_state.selected_file) | |
else: | |
st.error("Selected file no longer exists.") | |
st.session_state.selected_file = None | |
st.rerun() | |
# Show initial content: Either when first landing or when no interactive elements are active | |
if show_initial_content: | |
# First show the clickable terms with links | |
terms1 = extract_terms(AITopicsToInnovate1) | |
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) | |
all_terms = terms1 + terms2 | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
st.markdown("# AI Topics to Innovate With") | |
st.markdown(AITopicsToInnovate1) | |
with col2: | |
st.markdown("# AI Agent Links") | |
display_terms_with_links(terms1) | |
with col3: | |
st.markdown("# Multiplayer Games and MMOs") | |
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) | |
with col4: | |
st.markdown("# Multiplayer Game and MMO Links") | |
display_terms_with_links(terms2) | |
if __name__ == "__main__": | |
main() |