|
import streamlit as st |
|
import os |
|
import glob |
|
import re |
|
import base64 |
|
import pytz |
|
from urllib.parse import quote |
|
from gradio_client import Client |
|
from datetime import datetime |
|
|
|
|
|
Site_Name = 'AI Knowledge Tree Builder ๐๐ฟ Grow Smarter with Every Click' |
|
title = "๐ณโจAI Knowledge Tree Builder๐ ๏ธ๐ค" |
|
helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' |
|
bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' |
|
icons = '๐ณโจ๐ ๏ธ๐ค' |
|
st.set_page_config( |
|
page_title=title, |
|
page_icon=icons, |
|
layout="wide", |
|
initial_sidebar_state="auto", |
|
menu_items={ |
|
'Get Help': helpURL, |
|
'Report a bug': bugURL, |
|
'About': title |
|
} |
|
) |
|
|
|
|
|
|
|
if 'selected_file' not in st.session_state: |
|
st.session_state.selected_file = None |
|
if 'view_mode' not in st.session_state: |
|
st.session_state.view_mode = 'view' |
|
if 'files' not in st.session_state: |
|
st.session_state.files = [] |
|
|
|
|
|
|
|
AITopicsToInnovate1=""" |
|
1. Major AI Industry Players ๐ |
|
1. Research Leaders ๐ฏ |
|
- OpenAI: GPT-4 DALL-E Foundation Models ๐ต |
|
- Google: PaLM Gemini LLMs ๐ฆ |
|
- Anthropic: Claude Constitutional AI โก |
|
- Meta: LLaMA Open Source LLMs ๐ค |
|
- xAI: Grok Conversational AI ๐ค |
|
|
|
2. Technical AI Development ๐ ๏ธ |
|
1. Architecture Advances ๐ซ |
|
- Transformer Models Attention Mechanisms ๐ง |
|
- Mixture of Experts MoE Architecture ๐ช |
|
- Sparse Neural Networks ๐ธ๏ธ |
|
- Multi-modal LLM Systems ๐ |
|
- Flash Attention Optimization โ๏ธ |
|
|
|
2. Training Methodologies ๐ |
|
- LLM Supervised Fine-tuning ๐จโ๐ซ |
|
- RLHF Reward Models ๐ค |
|
- Constitutional AI Training ๐ |
|
- RLAIF Feedback Models ๐ |
|
- Synthetic Data LLM Training ๐ฒ |
|
- Chain of Thought Prompting ๐งฉ |
|
- Tree of Thoughts Reasoning ๐ณ |
|
|
|
3. Post-Training Implementation ๐ง |
|
- Neural Network Distillation ๐งช |
|
- LLM Quantization Methods ๐ |
|
- Neural Network Pruning โ๏ธ |
|
- Knowledge Distillation Transfer ๐ |
|
- Few-shot LLM Learning ๐ฏ |
|
|
|
3. Mechanistic Interpretability ๐ฌ |
|
1. Core Concepts ๐ก |
|
- Neural Network Growth Analysis ๐ฑ |
|
- LLM Architecture Analysis ๐๏ธ |
|
- Training Loss Optimization ๐จ |
|
- Neural Network Analogies ๐งฌ |
|
|
|
2. Technical Features ๐ |
|
- LLM Linear Representations โก๏ธ |
|
- Neural Vector Arithmetic ๐ข |
|
- Neural Activation Patterns ๐ |
|
- LLM Feature Detection ๐ |
|
- Neural Sparse Autoencoders ๐ญ |
|
|
|
3. Network Analysis ๐ต๏ธ |
|
- LLM Induction Heads ๐ |
|
- Transformer Attention Analysis ๐ช |
|
- Neural Circuit Analysis ๐ |
|
- LLM Feature Visualization ๐ |
|
- Neural Concept Directions ๐ณ |
|
|
|
4. Future AI Developments ๐ |
|
1. AGI Timeline โฐ |
|
- AGI Capability Projections ๐
|
|
- Neural Hardware Scaling ๐พ |
|
- LLM Training Data Limits ๐ |
|
- AI Compute Resources ๐บ๏ธ |
|
|
|
2. Integration Fields ๐ก |
|
- AI Biology Integration ๐ฎ |
|
- AI Drug Discovery Systems ๐ |
|
- AI Clinical Trial Analysis ๐ฅ |
|
- AI Code Generation ๐คน |
|
- AI Scientific Discovery ๐งฎ |
|
|
|
5. Industry Best Practices ๐ |
|
1. AI Team Building ๐ข |
|
- AI Talent Development ๐ฅ |
|
- AI Research Alignment ๐ช |
|
- AI Team Scaling ๐ |
|
- AI Research Culture ๐ |
|
|
|
2. AI Research Qualities ๐ |
|
- AI Research Methodology ๐งญ |
|
- AI Experimentation Protocols ๐๏ธ |
|
- AI Innovation Thinking ๐ซ |
|
- AI Testing Framework โ๏ธ |
|
|
|
3. AI Safety Standards ๐ก๏ธ |
|
- LLM Behavioral Specifications ๐ |
|
- AI Safety Guidelines ๐ฎ |
|
- AI Ethics Framework โ๏ธ |
|
- AI Industry Standards ๐คฒ |
|
|
|
6. Emerging Research Areas ๐ฎ |
|
1. Technical Focus ๐ฏ |
|
- LLM Long Context Learning โณ |
|
- LLM Multi-agent Interaction ๐พ |
|
- AI Evaluation Metrics ๐ |
|
- Neural Interpretability Methods ๐ญ |
|
|
|
2. AI Applications ๐ผ |
|
- AI Automated Research ๐งซ |
|
- AI Code Synthesis โจ๏ธ |
|
- AI Biological Modeling ๐งฏ |
|
- AI Medical Diagnostics ๐ |
|
|
|
7. Model Intelligence ๐งฟ |
|
1. LLM System Development ๐ช |
|
- LLM Prompt Engineering ๐ |
|
- LLM Response Generation โ๏ธ |
|
- LLM Behavioral Training ๐น |
|
- LLM Personality Development ๐ช |
|
|
|
2. LLM User Interaction ๐ญ |
|
- LLM Autonomy Alignment ๐ช |
|
- LLM Safety Boundaries ๐ |
|
- LLM Communication Patterns ๐ฃ๏ธ |
|
- LLM Performance Tuning ๐ข |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
DarioAmodeiKnowledge=""" |
|
1. Major AI Industry Players ๐ |
|
1. Research Leaders ๐ฏ |
|
- OpenAI: GPT-4 DALL-E ๐ต |
|
- Google: PaLM Gemini ๐ฆ |
|
- Anthropic: Claude โก |
|
- Meta: LLaMA ๐ค |
|
- xAI: Grok ๐ค |
|
|
|
2. Technical AI Development ๐ ๏ธ |
|
1. Architecture Advances ๐ซ |
|
- Transformer Models ๐ง |
|
- Mixture of Experts ๐ช |
|
- Sparse Architectures ๐ธ๏ธ |
|
- Multi-modal Models ๐ |
|
- Flash Attention โ๏ธ |
|
|
|
2. Training Methodologies ๐ |
|
- Supervised Fine-tuning ๐จโ๐ซ |
|
- RLHF Human Feedback ๐ค |
|
- Constitutional AI ๐ |
|
- RLAIF AI Feedback ๐ |
|
- Synthetic Data Generation ๐ฒ |
|
- Chain of Thought ๐งฉ |
|
- Tree of Thoughts ๐ณ |
|
|
|
3. Post-Training Implementation ๐ง |
|
- Model Distillation ๐งช |
|
- Quantization ๐ |
|
- Pruning โ๏ธ |
|
- Knowledge Distillation ๐ |
|
- Few-shot Learning ๐ฏ |
|
|
|
3. Mechanistic Interpretability ๐ฌ |
|
1. Core Concepts ๐ก |
|
- Neural Network Growth Patterns ๐ฑ |
|
- Architecture Scaffolding ๐๏ธ |
|
- Training Objective Guidance ๐จ |
|
- Biological System Analogies ๐งฌ |
|
|
|
2. Technical Features ๐ |
|
- Linear Representations โก๏ธ |
|
- Vector Arithmetic ๐ข |
|
- Activation Patterns ๐ |
|
- Feature Detection ๐ |
|
- Sparse Autoencoders ๐ญ |
|
|
|
3. Network Analysis ๐ต๏ธ |
|
- Induction Heads ๐ |
|
- Attention Mechanisms ๐ช |
|
- Circuit Analysis ๐ |
|
- Feature Visualization ๐ |
|
- Concept Directions ๐ณ |
|
|
|
4. Future AI Developments ๐ |
|
1. AGI Timeline โฐ |
|
- 2026-2027 Capability Projections ๐
|
|
- Hardware Scaling ๐พ |
|
- Data Limitations ๐ |
|
- Geopolitical Factors ๐บ๏ธ |
|
|
|
2. Integration Fields ๐ก |
|
- Biology Research ๐ฎ |
|
- Drug Discovery ๐ |
|
- Clinical Trials ๐ฅ |
|
- Programming Automation ๐คน |
|
- Scientific Research ๐งฎ |
|
|
|
5. Industry Best Practices ๐ |
|
1. Team Building ๐ข |
|
- Talent Density Focus ๐ฅ |
|
- Mission Alignment ๐ช |
|
- Rapid Scaling Management ๐ |
|
- Culture Development ๐ |
|
|
|
2. Research Qualities ๐ |
|
- Scientific Mindset ๐งญ |
|
- Experimental Approach ๐๏ธ |
|
- Unconventional Thinking ๐ซ |
|
- Rapid Testing โ๏ธ |
|
|
|
3. Safety Standards ๐ก๏ธ |
|
- Model Specifications ๐ |
|
- Behavioral Guidelines ๐ฎ |
|
- Ethics Implementation โ๏ธ |
|
- Industry Collaboration ๐คฒ |
|
|
|
6. Emerging Research Areas ๐ฎ |
|
1. Technical Focus ๐ฏ |
|
- Long Horizon Learning โณ |
|
- Multi-agent Systems ๐พ |
|
- Evaluation Systems ๐ |
|
- Interpretability Research ๐ญ |
|
|
|
2. Applications ๐ผ |
|
- Automated Science ๐งซ |
|
- AI Programming Tools โจ๏ธ |
|
- Biological Simulation ๐งฏ |
|
- Clinical Applications ๐ |
|
|
|
7. Model Intelligence ๐งฟ |
|
1. System Development ๐ช |
|
- Prompt Engineering ๐ |
|
- Response Patterns โ๏ธ |
|
- Behavioral Modification ๐น |
|
- Character Development ๐ช |
|
|
|
2. User Interaction ๐ญ |
|
- Autonomy Respect ๐ช |
|
- Safety Boundaries ๐ |
|
- Communication Adaptation ๐ฃ๏ธ |
|
- Performance Optimization ๐ข |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
Boxing_and_MMA_Commentary_and_Knowledge = """ |
|
# Boxing and UFC Study of 1971 - 2024 The Greatest Fights History |
|
|
|
1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim. |
|
2. After changes to Boxing made it more safe due to the heart break. |
|
3. Rehydration of the brain after weight ins loss preparation for a match is life saving change. |
|
4. Fighting went from 15 rounds to 12. |
|
|
|
# UFC By Contrast.. |
|
1. 5 Rounds of 5 Minutes each. |
|
2. Greatest UFC Fighters: |
|
- Jon Jones could be the greatest of all time (GOAT) since he never lost. |
|
- George St. Pierre |
|
- BJ Penn |
|
- Anderson Silva |
|
- Mighty Mouse MMA's heart at 125 pounds |
|
- Kabib retired 29 and 0 |
|
- Fedor Milliano |
|
- Alex Pereira |
|
- James Tony |
|
- Randy Couture |
|
3. You have to Judge them in their Championship Peak |
|
4. Chris Weidman |
|
5. Connor McGregor |
|
6. Leg Breaking - Shin calcification and breaking baseball bats |
|
|
|
# References: |
|
1. Joe Rogan - Interview #2219 |
|
2. Donald J Trump |
|
""" |
|
|
|
Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """ |
|
# Multiplayer Simulated Worlds |
|
|
|
# Farming Simulator 25 Prompt Features with Emojis: |
|
# Top Multiplayer and MMO Games 2024 |
|
|
|
## 1. Top Multiplayer Survival & Simulation Games 2024 ๐ฎ |
|
### 1.1 Survival Games ๐น |
|
- **Rust** ๐ฆพ |
|
* Advanced Base Building Physics |
|
* Electricity & Automation Systems |
|
* Dynamic Player-driven Economy |
|
|
|
- **ARK: Survival Evolved** ๐ฆ |
|
* Dinosaur Taming & Breeding |
|
* Tek Tier Technology System |
|
* Cross-map Resource Networks |
|
|
|
- **Valheim** โ๏ธ |
|
* Norse Mythology Building System |
|
* Boss-progression World Evolution |
|
* Structural Integrity Physics |
|
|
|
- **DayZ** ๐ง |
|
* Realistic Medical System |
|
* Dynamic Disease Mechanics |
|
* Advanced Ballistics Simulation |
|
|
|
- **7 Days to Die** ๐ฐ |
|
* Voxel Destruction Physics |
|
* Dynamic Horde AI System |
|
* Advanced Base Engineering |
|
|
|
### 1.2 Simulation & Building Games ๐๏ธ |
|
- **Satisfactory** ๐ญ |
|
* 3D Factory Automation |
|
* Vertical Building Systems |
|
* Multi-tier Production Chains |
|
|
|
- **Factorio** โ๏ธ |
|
* Complex Logistics Networks |
|
* Modular Factory Design |
|
* Advanced Train Systems |
|
|
|
- **Space Engineers** ๐ |
|
* Physics-based Construction |
|
* Programmable Block System |
|
* Zero-G Engineering |
|
|
|
- **Farming Simulator 22** ๐ |
|
* Real Brand Machinery |
|
* Complex Production Chains |
|
* Season-based Agriculture |
|
|
|
- **Eco** ๐ |
|
* Economic Simulation |
|
* Environmental Impact System |
|
* Government Creation Tools |
|
|
|
## 2. Top MMO Games 2024 ๐ |
|
### 2.1 Fantasy MMORPGs ๐ก๏ธ |
|
- **Final Fantasy XIV** โจ |
|
* Job System Flexibility |
|
* Story-driven Content |
|
* Cross-platform Raids |
|
|
|
- **World of Warcraft** ๐ฒ |
|
* Dragonflight Flying System |
|
* Mythic+ Challenge System |
|
* Cross-faction Activities |
|
|
|
- **Elder Scrolls Online** ๐น |
|
* One Tamriel Level Scaling |
|
* Housing Construction |
|
* Champion Point System |
|
|
|
- **Lost Ark** โ๏ธ |
|
* Combat Skill System |
|
* Island Content System |
|
* Legion Raid Mechanics |
|
|
|
- **Black Desert Online** ๐ญ |
|
* Action Combat System |
|
* Life Skill Systems |
|
* Node Management |
|
|
|
### 2.2 Modern/Sci-Fi MMOs ๐ธ |
|
- **Destiny 2** ๐ฝ |
|
* Buildcrafting System |
|
* Raid Mechanics |
|
* Season Narrative Structure |
|
|
|
- **Star Wars: The Old Republic** ๐ |
|
* Story Choice System |
|
* Legacy System |
|
* Companion Influence |
|
|
|
- **Warframe** ๐ค |
|
* Movement System |
|
* Frame Customization |
|
* Open World Integration |
|
|
|
- **The Division 2** ๐๏ธ |
|
* Cover Combat System |
|
* Dark Zone Mechanics |
|
* Recalibration System |
|
|
|
- **Path of Exile** โก |
|
* Skill Gem System |
|
* Passive Tree Complexity |
|
* League Mechanics |
|
|
|
## 3. Notable Crossplay Games ๐ฏ |
|
- **Minecraft** ๐ฆ |
|
* Cross-platform Building |
|
* Redstone Engineering |
|
* Modded Servers |
|
|
|
- **Sea of Thieves** ๐ดโโ ๏ธ |
|
* Ship Combat Physics |
|
* Crew Coordination |
|
* World Events |
|
|
|
- **No Man's Sky** ๐ช |
|
* Procedural Planets |
|
* Base Building Network |
|
* Multiplayer Expeditions |
|
""" |
|
|
|
def get_display_name(filename): |
|
"""Extract text from parentheses or return filename as is.""" |
|
match = re.search(r'\((.*?)\)', filename) |
|
if match: |
|
return match.group(1) |
|
return filename |
|
|
|
def get_time_display(filename): |
|
"""Extract just the time portion from the filename.""" |
|
time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) |
|
if time_match: |
|
return time_match.group(1) |
|
return filename |
|
|
|
def sanitize_filename(text): |
|
"""Create a safe filename from text while preserving spaces.""" |
|
|
|
safe_text = re.sub(r'[^\w\s-]', ' ', text) |
|
|
|
safe_text = re.sub(r'\s+', ' ', safe_text) |
|
|
|
safe_text = safe_text.strip() |
|
return safe_text[:50] |
|
|
|
def generate_timestamp_filename(query): |
|
"""Generate filename with format: 1103AM 11032024 (Query).md""" |
|
|
|
central = pytz.timezone('US/Central') |
|
current_time = datetime.now(central) |
|
|
|
|
|
time_str = current_time.strftime("%I%M%p") |
|
date_str = current_time.strftime("%m%d%Y") |
|
|
|
|
|
safe_query = sanitize_filename(query) |
|
|
|
|
|
filename = f"{time_str} {date_str} ({safe_query}).md" |
|
|
|
return filename |
|
|
|
def delete_file(file_path): |
|
"""Delete a file and return success status.""" |
|
try: |
|
os.remove(file_path) |
|
return True |
|
except Exception as e: |
|
st.error(f"Error deleting file: {e}") |
|
return False |
|
|
|
def save_ai_interaction(query, ai_result, is_rerun=False): |
|
"""Save AI interaction to a markdown file with new filename format.""" |
|
filename = generate_timestamp_filename(query) |
|
|
|
|
|
if is_rerun: |
|
content = f"""# Rerun Query |
|
Original file content used for rerun: |
|
|
|
{query} |
|
|
|
# AI Response (Fun Version) |
|
{ai_result} |
|
""" |
|
else: |
|
content = f"""# Query: {query} |
|
|
|
## AI Response |
|
{ai_result} |
|
""" |
|
|
|
|
|
try: |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write(content) |
|
return filename |
|
except Exception as e: |
|
st.error(f"Error saving file: {e}") |
|
return None |
|
|
|
def get_file_download_link(file_path): |
|
"""Generate a base64 download link for a file.""" |
|
try: |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
b64 = base64.b64encode(content.encode()).decode() |
|
filename = os.path.basename(file_path) |
|
return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>' |
|
except Exception as e: |
|
st.error(f"Error creating download link: {e}") |
|
return None |
|
|
|
def extract_terms(markdown_text): |
|
"""Parse markdown text and extract terms.""" |
|
lines = markdown_text.strip().split('\n') |
|
terms = [] |
|
for line in lines: |
|
line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip() |
|
if line: |
|
terms.append(line) |
|
return terms |
|
|
|
def display_terms_with_links(terms): |
|
"""Display terms with various search links.""" |
|
search_urls = { |
|
"๐๐ArXiv": lambda k: f"/?q={quote(k)}", |
|
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", |
|
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}", |
|
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", |
|
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}", |
|
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", |
|
} |
|
for term in terms: |
|
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) |
|
st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True) |
|
|
|
def perform_ai_lookup(query): |
|
"""Perform AI lookup using Gradio client.""" |
|
st.write("Performing AI Lookup...") |
|
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
result1 = client.predict( |
|
prompt=query, |
|
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
stream_outputs=True, |
|
api_name="/ask_llm" |
|
) |
|
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") |
|
st.markdown(result1) |
|
result2 = client.predict( |
|
prompt=query, |
|
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", |
|
stream_outputs=True, |
|
api_name="/ask_llm" |
|
) |
|
st.markdown("### Mistral-7B-Instruct-v0.2 Result") |
|
st.markdown(result2) |
|
combined_result = f"{result1}\n\n{result2}" |
|
return combined_result |
|
|
|
def display_file_content(file_path): |
|
"""Display file content with editing capabilities.""" |
|
try: |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
|
|
if st.session_state.view_mode == 'view': |
|
|
|
st.markdown(content) |
|
else: |
|
|
|
edited_content = st.text_area( |
|
"Edit content", |
|
content, |
|
height=400, |
|
key=f"edit_{os.path.basename(file_path)}" |
|
) |
|
|
|
if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): |
|
try: |
|
with open(file_path, 'w', encoding='utf-8') as f: |
|
f.write(edited_content) |
|
st.success(f"Successfully saved changes to {file_path}") |
|
except Exception as e: |
|
st.error(f"Error saving changes: {e}") |
|
except Exception as e: |
|
st.error(f"Error reading file: {e}") |
|
|
|
def file_management_sidebar(): |
|
"""Redesigned sidebar with improved layout and additional functionality.""" |
|
st.sidebar.title("๐ File Management") |
|
|
|
|
|
md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] |
|
md_files.sort() |
|
st.session_state.files = md_files |
|
|
|
if md_files: |
|
st.sidebar.markdown("### Saved Files") |
|
for idx, file in enumerate(md_files): |
|
st.sidebar.markdown("---") |
|
|
|
|
|
st.sidebar.text(get_time_display(file)) |
|
|
|
|
|
download_link = get_file_download_link(file) |
|
if download_link: |
|
st.sidebar.markdown(download_link, unsafe_allow_html=True) |
|
|
|
|
|
col1, col2, col3, col4 = st.sidebar.columns(4) |
|
|
|
with col1: |
|
if st.button("๐ View", key=f"view_{idx}"): |
|
st.session_state.selected_file = file |
|
st.session_state.view_mode = 'view' |
|
|
|
with col2: |
|
if st.button("โ๏ธ Edit", key=f"edit_{idx}"): |
|
st.session_state.selected_file = file |
|
st.session_state.view_mode = 'edit' |
|
|
|
with col3: |
|
if st.button("๐ Rerun", key=f"rerun_{idx}"): |
|
try: |
|
with open(file, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
|
|
|
|
rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: |
|
|
|
""" |
|
full_prompt = rerun_prefix + content |
|
|
|
|
|
ai_result = perform_ai_lookup(full_prompt) |
|
saved_file = save_ai_interaction(content, ai_result, is_rerun=True) |
|
|
|
if saved_file: |
|
st.success(f"Created fun version in {saved_file}") |
|
st.session_state.selected_file = saved_file |
|
st.session_state.view_mode = 'view' |
|
|
|
except Exception as e: |
|
st.error(f"Error during rerun: {e}") |
|
|
|
with col4: |
|
if st.button("๐๏ธ Delete", key=f"delete_{idx}"): |
|
if delete_file(file): |
|
st.success(f"Deleted {file}") |
|
st.rerun() |
|
else: |
|
st.error(f"Failed to delete {file}") |
|
|
|
st.sidebar.markdown("---") |
|
|
|
if st.sidebar.button("๐ Create New Note"): |
|
filename = generate_timestamp_filename("New Note") |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write("# New Markdown File\n") |
|
st.sidebar.success(f"Created: {filename}") |
|
st.session_state.selected_file = filename |
|
st.session_state.view_mode = 'edit' |
|
else: |
|
st.sidebar.write("No markdown files found.") |
|
if st.sidebar.button("๐ Create First Note"): |
|
filename = generate_timestamp_filename("New Note") |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write("# New Markdown File\n") |
|
st.sidebar.success(f"Created: {filename}") |
|
st.session_state.selected_file = filename |
|
st.session_state.view_mode = 'edit' |
|
|
|
def main(): |
|
st.title("AI Knowledge Tree Builder ๐ง ๐ฑ Cultivate Your AI Mindscape!") |
|
|
|
|
|
query_params = st.query_params |
|
query = query_params.get('q', '') |
|
show_initial_content = True |
|
|
|
|
|
if query: |
|
show_initial_content = False |
|
st.write(f"### Search query received: {query}") |
|
try: |
|
ai_result = perform_ai_lookup(query) |
|
|
|
|
|
saved_file = save_ai_interaction(query, ai_result) |
|
if saved_file: |
|
st.success(f"Saved interaction to {saved_file}") |
|
st.session_state.selected_file = saved_file |
|
st.session_state.view_mode = 'view' |
|
except Exception as e: |
|
st.error(f"Error during AI lookup: {e}") |
|
|
|
|
|
file_management_sidebar() |
|
|
|
|
|
if st.session_state.selected_file: |
|
show_initial_content = False |
|
if os.path.exists(st.session_state.selected_file): |
|
st.markdown(f"### Current File: {st.session_state.selected_file}") |
|
display_file_content(st.session_state.selected_file) |
|
else: |
|
st.error("Selected file no longer exists.") |
|
st.session_state.selected_file = None |
|
st.rerun() |
|
|
|
|
|
if show_initial_content: |
|
|
|
terms1 = extract_terms(AITopicsToInnovate1) |
|
terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) |
|
all_terms = terms1 + terms2 |
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
with col1: |
|
st.markdown("# AI Topics to Innovate With") |
|
st.markdown(AITopicsToInnovate1) |
|
with col2: |
|
st.markdown("# AI Agent Links") |
|
display_terms_with_links(terms1) |
|
with col3: |
|
st.markdown("# Multiplayer Games and MMOs") |
|
st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) |
|
with col4: |
|
st.markdown("# Multiplayer Game and MMO Links |
|
display_terms_with_links(terms2) |
|
|
|
if __name__ == "__main__": |
|
main() |