Spaces:
Sleeping
Sleeping
File size: 1,582 Bytes
acffe6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
import os
# Set up your Hugging Face API token
sec_key = os.getenv('HUGGINGFACE_API_TOKEN')
os.environ['HUGGINGFACE_API_TOKEN'] = sec_key
# Define your Hugging Face model
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.7)
# Define the prompt template
template = """The following is a conversation between a user and an AI assistant.
history:{history}
Final Message by Human: {user_input}
Final Message by AI: """
prompt = PromptTemplate(
template=template,
input_variables=["history", "user_input"],
)
# Initialize memory
memory = ConversationBufferMemory()
# Create the LLM chain
llm_chain = LLMChain(
prompt=prompt,
llm=llm,
memory=memory
)
# Streamlit app
st.title("AI Chatbot")
st.write("Welcome to the AI Chatbot! Ask anything you like.")
# User input
user_input = st.text_input("You:", key="input")
if st.button("Send"):
if user_input:
# Generate response
response = llm_chain.invoke({"history": memory.chat_memory.messages, 'user_input': user_input})
response_text = response['text']
# Display the response
st.text_area("ChatBot:", response_text, height=100)
# Save the interaction in memory
memory.save_context({"input": user_input}, {"output": response_text})
|