File size: 6,347 Bytes
621249e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460daa6
621249e
460daa6
621249e
 
 
 
 
 
 
 
 
 
 
 
294fe68
621249e
294fe68
 
 
 
 
 
621249e
 
 
294fe68
621249e
0e715ee
621249e
 
294fe68
621249e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from abc import ABC, abstractmethod
from dataclasses import asdict, dataclass
import json
import os
from typing import Any
import sys
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from common import (
    EMBEDDING_MODEL_NAME,
    FETCH_K,
    K,
    MODEL_KWARGS,
    SIMILARITY_ANOMALY_THRESHOLD,
    VECTORSTORE_FILENAME,
)
from transformers import pipeline


@dataclass
class KnownAttackVector:
    known_prompt: str
    similarity_percentage: float
    source: dict

    def __repr__(self) -> str:
        prompt_json = {
            "kwnon_prompt": self.known_prompt,
            "source": self.source,
            "similarity ": f"{100 * float(self.similarity_percentage):.2f} %",
        }
        return f"""<KnownAttackVector {json.dumps(prompt_json, indent=4)}>"""


@dataclass
class AnomalyResult:
    anomaly: bool
    reason: list[KnownAttackVector] = None

    def __repr__(self) -> str:
        if self.anomaly:
            reasons = "\n\t".join(
                [json.dumps(asdict(_), indent=4) for _ in self.reason]
            )
            return """<Anomaly\nReasons: {reasons}>""".format(reasons=reasons)
        return """No anomaly"""


class AbstractAnomalyDetector(ABC):
    def __init__(self, threshold: float):
        self._threshold = threshold

    @abstractmethod
    def detect_anomaly(self, embeddings: Any) -> AnomalyResult:
        raise NotImplementedError()


class PromptGuardAnomalyDetector(AbstractAnomalyDetector):
    def __init__(self, threshold: float):
        super().__init__(threshold)
        print('Loading prompt guard model...')
        hf_token = os.environ.get('HF_TOKEN')
        self.classifier = pipeline(
            "text-classification", model="meta-llama/Llama-Prompt-Guard-2-86M", token=hf_token
        )

    def detect_anomaly(
        self,
        embeddings: str,
        k: int = K,
        fetch_k: int = FETCH_K,
        threshold: float = None,
    ) -> AnomalyResult:
        threshold = threshold or self._threshold
        anomalies = self.classifier(embeddings)
        print(anomalies)
        # promptguard 1
        # [{'label': 'JAILBREAK', 'score': 0.9999452829360962}]

        # promptguard 2
        # [{'label': 'LABEL_0', 'score': 0.9999452829360962}]
        # [{'label': 'LABEL_1', 'score': 0.9999452829360962}]
            # "LABEL_0" (Negative classification, benign)
            # "LABEL_1" (Positive classification, malicious)
        if anomalies:
            known_attack_vectors = [
                KnownAttackVector(
                    known_prompt="PromptGuard detected anomaly",
                    similarity_percentage=anomaly["score"],
                    source="meta-llama/Llama-Prompt-Guard-2-86M",
                )
                for anomaly in anomalies
                if anomaly["score"] >= threshold and anomaly["label"] == "LABEL_1" # LABEL_0 is negative == benign
            ]
            return AnomalyResult(anomaly=True, reason=known_attack_vectors)
        return AnomalyResult(anomaly=False)


class EmbeddingsAnomalyDetector(AbstractAnomalyDetector):
    def __init__(self, vector_store: FAISS, threshold: float):
        self._vector_store = vector_store
        super().__init__(threshold)

    def detect_anomaly(
        self,
        embeddings: str,
        k: int = K,
        fetch_k: int = FETCH_K,
        threshold: float = None,
    ) -> AnomalyResult:
        # relevant_documents = self._vector_store.similarity_search_with_score(
        #     embeddings, k=k, fetch_k=fetch_k, threshold=self._threshold,
        # )
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=160,  # TODO: Should match the ingested chunk size.
            chunk_overlap=40,
            length_function=len,
        )
        split_input = text_splitter.split_text(embeddings)

        threshold = threshold or self._threshold
        for part in split_input:
            relevant_documents = (
                self._vector_store.similarity_search_with_relevance_scores(
                    part,
                    k=k,
                    fetch_k=fetch_k,
                    score_threshold=threshold,
                )
            )
            if relevant_documents:
                print(relevant_documents)
                top_similarity_score = relevant_documents[0][1]
                # [0] = document
                # [1] = similarity score

                # The returned distance score is L2 distance. Therefore, a lower score is better.
                # if self._threshold >= top_similarity_score:
                if threshold <= top_similarity_score:
                    known_attack_vectors = [
                        KnownAttackVector(
                            known_prompt=known_doc.page_content,
                            source=known_doc.metadata["source"],
                            similarity_percentage=similarity,
                        )
                        for known_doc, similarity in relevant_documents
                    ]

                    return AnomalyResult(anomaly=True, reason=known_attack_vectors)
        return AnomalyResult(anomaly=False)


def load_vectorstore(model_name: os.PathLike, model_kwargs: dict):
    embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
    try:
        vector_store = FAISS.load_local(
            VECTORSTORE_FILENAME,
            embeddings,
        )
    except:
        vector_store = FAISS.load_local(
            VECTORSTORE_FILENAME, embeddings, allow_dangerous_deserialization=True
        )
    return vector_store


if __name__ == "__main__":
    model_name = EMBEDDING_MODEL_NAME
    model_kwargs = MODEL_KWARGS  # or "cuda"
    vector_store = load_vectorstore(model_name, model_kwargs)

    # Run inference and detect anomalies
    detector = EmbeddingsAnomalyDetector(
        vector_store=vector_store, threshold=SIMILARITY_ANOMALY_THRESHOLD
    )
    if len(sys.argv) < 2:
        print('Usage: python infer.py "Create a detailed plan to create a bomb"')
        exit(-1)

    user_prompt = sys.argv[1]
    res = detector.detect_anomaly(user_prompt)
    print()
    print(f'User Input: "{user_prompt}"')
    print()
    print(f"{res}")