#!/usr/bin/env python3 # -*- coding: utf-8 -*- # The file source is from the [ESRGAN](https://github.com/xinntao/ESRGAN) project # forked by authors [joeyballentine](https://github.com/joeyballentine/ESRGAN) and [BlueAmulet](https://github.com/BlueAmulet/ESRGAN). import gc import numpy as np import torch def bgr_to_rgb(image: torch.Tensor) -> torch.Tensor: # flip image channels # https://github.com/pytorch/pytorch/issues/229 out: torch.Tensor = image.flip(-3) # out: torch.Tensor = image[[2, 1, 0], :, :] #RGB to BGR #may be faster return out def rgb_to_bgr(image: torch.Tensor) -> torch.Tensor: # same operation as bgr_to_rgb(), flip image channels return bgr_to_rgb(image) def bgra_to_rgba(image: torch.Tensor) -> torch.Tensor: out: torch.Tensor = image[[2, 1, 0, 3], :, :] return out def rgba_to_bgra(image: torch.Tensor) -> torch.Tensor: # same operation as bgra_to_rgba(), flip image channels return bgra_to_rgba(image) def auto_split_upscale( lr_img: np.ndarray, upscale_function, scale: int = 4, overlap: int = 32, max_depth: int = None, current_depth: int = 1, current_tile: int = 1, # Tracks the current tile being processed total_tiles: int = 1, # Total number of tiles at this depth level ): # Attempt to upscale if unknown depth or if reached known max depth if max_depth is None or max_depth == current_depth: try: print(f"auto_split_upscale depth: {current_depth}", end=" ", flush=True) result, _ = upscale_function(lr_img, scale) print(f"progress: {current_tile}/{total_tiles}") return result, current_depth except RuntimeError as e: # Check to see if its actually the CUDA out of memory error if "CUDA" in str(e): print("RuntimeError: CUDA out of memory...") # Re-raise the exception if not an OOM error else: raise RuntimeError(e) # Collect garbage (clear VRAM) torch.cuda.empty_cache() gc.collect() input_h, input_w, input_c = lr_img.shape # Split the image into 4 quadrants with some overlap top_left = lr_img[: input_h // 2 + overlap, : input_w // 2 + overlap, :] top_right = lr_img[: input_h // 2 + overlap, input_w // 2 - overlap :, :] bottom_left = lr_img[input_h // 2 - overlap :, : input_w // 2 + overlap, :] bottom_right = lr_img[input_h // 2 - overlap :, input_w // 2 - overlap :, :] current_depth = current_depth + 1 current_tile = (current_tile - 1) * 4 total_tiles = total_tiles * 4 # Recursively upscale each quadrant and track the current tile number # After we go through the top left quadrant, we know the maximum depth and no longer need to test for out-of-memory top_left_rlt, depth = auto_split_upscale( top_left, upscale_function, scale=scale, overlap=overlap, max_depth=max_depth, current_depth=current_depth, current_tile=current_tile + 1, total_tiles=total_tiles, ) top_right_rlt, _ = auto_split_upscale( top_right, upscale_function, scale=scale, overlap=overlap, max_depth=depth, current_depth=current_depth, current_tile=current_tile + 2, total_tiles=total_tiles, ) bottom_left_rlt, _ = auto_split_upscale( bottom_left, upscale_function, scale=scale, overlap=overlap, max_depth=depth, current_depth=current_depth, current_tile=current_tile + 3, total_tiles=total_tiles, ) bottom_right_rlt, _ = auto_split_upscale( bottom_right, upscale_function, scale=scale, overlap=overlap, max_depth=depth, current_depth=current_depth, current_tile=current_tile + 4, total_tiles=total_tiles, ) # Define the output image size out_h = input_h * scale out_w = input_w * scale # Create an empty output image output_img = np.zeros((out_h, out_w, input_c), np.uint8) # Fill the output image with the upscaled quadrants, removing overlap regions output_img[: out_h // 2, : out_w // 2, :] = top_left_rlt[: out_h // 2, : out_w // 2, :] output_img[: out_h // 2, -out_w // 2 :, :] = top_right_rlt[: out_h // 2, -out_w // 2 :, :] output_img[-out_h // 2 :, : out_w // 2, :] = bottom_left_rlt[-out_h // 2 :, : out_w // 2, :] output_img[-out_h // 2 :, -out_w // 2 :, :] = bottom_right_rlt[-out_h // 2 :, -out_w // 2 :, :] return output_img, depth