Added support for parsing MoSR models from the MoSR project by author umzi2.
Browse files
app.py
CHANGED
@@ -280,6 +280,12 @@ Optimized primarily for PAL resolution (NTSC might work good as well)."""],
|
|
280 |
"4xNomos2_hq_atd.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_atd/4xNomos2_hq_atd.pth",
|
281 |
"https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_atd",
|
282 |
"""An atd 4x upscaling model, similiar to the 4xNomos2_hq_dat2 or 4xNomos2_hq_mosr models, trained and for usage on non-degraded input to give good quality output.
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
"""],
|
284 |
}
|
285 |
|
@@ -312,6 +318,8 @@ def get_model_type(model_name):
|
|
312 |
model_type = "DRCT"
|
313 |
elif "atd" in model_name.lower():
|
314 |
model_type = "ATD"
|
|
|
|
|
315 |
return f"{model_type}, {model_name}"
|
316 |
|
317 |
typed_upscale_models = {get_model_type(key): value[0] for key, value in upscale_models.items()}
|
@@ -449,6 +457,19 @@ class Upscale:
|
|
449 |
upsampler=upsampler,
|
450 |
use_checkpoint=False,
|
451 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
self.upsampler = None
|
454 |
if model:
|
@@ -720,7 +741,7 @@ def main():
|
|
720 |
for key, _ in typed_upscale_models.items():
|
721 |
upscale_type, upscale_model = key.split(", ", 1)
|
722 |
if tmptype and tmptype != upscale_type:#RRDB ESRGAN
|
723 |
-
speed = "Fast" if tmptype == "SRVGG" else ("Slow" if any(value == tmptype for value in ("DAT", "HAT", "DRCT")) else "Normal")
|
724 |
upscale_model_header = f"| Upscale Model | Info, Type: {tmptype}, Model execution speed: {speed} | Download URL |\n|------------|------|--------------|"
|
725 |
upscale_model_tables.append(upscale_model_header + "\n" + "\n".join(rows))
|
726 |
rows.clear()
|
@@ -728,6 +749,7 @@ def main():
|
|
728 |
value = upscale_models[upscale_model]
|
729 |
row = f"| [{upscale_model}]({value[1]}) | " + value[2].replace("\n", "<br>") + " | [download]({value[0]}) |"
|
730 |
rows.append(row)
|
|
|
731 |
upscale_model_header = f"| Upscale Model Name | Info, Type: {tmptype}, Model execution speed: {speed} | Download URL |\n|------------|------|--------------|"
|
732 |
upscale_model_tables.append(upscale_model_header + "\n" + "\n".join(rows))
|
733 |
|
|
|
280 |
"4xNomos2_hq_atd.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_atd/4xNomos2_hq_atd.pth",
|
281 |
"https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_atd",
|
282 |
"""An atd 4x upscaling model, similiar to the 4xNomos2_hq_dat2 or 4xNomos2_hq_mosr models, trained and for usage on non-degraded input to give good quality output.
|
283 |
+
"""],
|
284 |
+
|
285 |
+
# MoSR
|
286 |
+
"4xNomos2_hq_mosr.pth" : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_mosr/4xNomos2_hq_mosr.pth",
|
287 |
+
"https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_mosr",
|
288 |
+
"""A 4x MoSR upscaling model, meant for non-degraded input, since this model was trained on non-degraded input to give good quality output.
|
289 |
"""],
|
290 |
}
|
291 |
|
|
|
318 |
model_type = "DRCT"
|
319 |
elif "atd" in model_name.lower():
|
320 |
model_type = "ATD"
|
321 |
+
elif "mosr" in model_name.lower():
|
322 |
+
model_type = "MoSR"
|
323 |
return f"{model_type}, {model_name}"
|
324 |
|
325 |
typed_upscale_models = {get_model_type(key): value[0] for key, value in upscale_models.items()}
|
|
|
457 |
upsampler=upsampler,
|
458 |
use_checkpoint=False,
|
459 |
)
|
460 |
+
elif upscale_type == "MoSR":
|
461 |
+
from basicsr.archs.mosr_arch import mosr
|
462 |
+
model = mosr(in_ch = 3,
|
463 |
+
out_ch = 3,
|
464 |
+
upscale = self.netscale,
|
465 |
+
n_block = 24,
|
466 |
+
dim = 64,
|
467 |
+
upsampler = "ps", # "ps" "ds"
|
468 |
+
drop_path = 0.0,
|
469 |
+
kernel_size = 7,
|
470 |
+
expansion_ratio = 1.5,
|
471 |
+
conv_ratio = 1.0
|
472 |
+
)
|
473 |
|
474 |
self.upsampler = None
|
475 |
if model:
|
|
|
741 |
for key, _ in typed_upscale_models.items():
|
742 |
upscale_type, upscale_model = key.split(", ", 1)
|
743 |
if tmptype and tmptype != upscale_type:#RRDB ESRGAN
|
744 |
+
speed = "Fast" if tmptype == "SRVGG" else ("Slow" if any(value == tmptype for value in ("DAT", "HAT", "DRCT", "ATD")) else "Normal")
|
745 |
upscale_model_header = f"| Upscale Model | Info, Type: {tmptype}, Model execution speed: {speed} | Download URL |\n|------------|------|--------------|"
|
746 |
upscale_model_tables.append(upscale_model_header + "\n" + "\n".join(rows))
|
747 |
rows.clear()
|
|
|
749 |
value = upscale_models[upscale_model]
|
750 |
row = f"| [{upscale_model}]({value[1]}) | " + value[2].replace("\n", "<br>") + " | [download]({value[0]}) |"
|
751 |
rows.append(row)
|
752 |
+
speed = "Fast" if tmptype == "SRVGG" else ("Slow" if any(value == tmptype for value in ("DAT", "HAT", "DRCT", "ATD")) else "Normal")
|
753 |
upscale_model_header = f"| Upscale Model Name | Info, Type: {tmptype}, Model execution speed: {speed} | Download URL |\n|------------|------|--------------|"
|
754 |
upscale_model_tables.append(upscale_model_header + "\n" + "\n".join(rows))
|
755 |
|