File size: 29,630 Bytes
c85d0ce 0f09e67 5ed81fc 0f09e67 5ed81fc 0f09e67 c85d0ce 5ed81fc c85d0ce 5ed81fc 0f09e67 c85d0ce 0f09e67 c85d0ce 0f09e67 c85d0ce 0f09e67 c85d0ce 0f09e67 c85d0ce 5ed81fc c85d0ce 0f09e67 c85d0ce 0f09e67 c85d0ce 0f09e67 c85d0ce 5ed81fc c85d0ce 5ed81fc 0f09e67 c85d0ce 379bb4d c85d0ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import os
import gc
import cv2
import requests
import numpy as np
import gradio as gr
import torch
import traceback
from facexlib.utils.misc import download_from_url
from realesrgan.utils import RealESRGANer
# Define URLs and their corresponding local storage paths
face_model = {
"GFPGANv1.4.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
"RestoreFormer++.ckpt": "https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt",
# "CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
# legacy model
"GFPGANv1.3.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
"GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
"RestoreFormer.ckpt": "https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt",
}
realesr_model = {
# SRVGGNet
"realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth", # x4 SRVGGNet (S size)
"realesr-animevideov3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth", # x4 SRVGGNet (XS size)
# RRDBNet
"RealESRGAN_x4plus_anime_6B.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth", # x4 RRDBNet with 6 blocks
"RealESRGAN_x2plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
"RealESRNet_x4plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
"RealESRGAN_x4plus.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
# ESRGAN(oldRRDB)
"4x-AnimeSharp.pth": "https://huggingface.co/utnah/esrgan/resolve/main/4x-AnimeSharp.pth?download=true", # https://openmodeldb.info/models/4x-AnimeSharp
"4x_IllustrationJaNai_V1_ESRGAN_135k.pth": "https://drive.google.com/uc?export=download&confirm=1&id=1qpioSqBkB_IkSBhEAewSSNFt6qgkBimP", # https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2
# DATNet
"4xNomos8kDAT.pth": "https://github.com/Phhofm/models/releases/download/4xNomos8kDAT/4xNomos8kDAT.pth", # https://openmodeldb.info/models/4x-Nomos8kDAT
"4x-DWTP-DS-dat2-v3.pth": "https://objectstorage.us-phoenix-1.oraclecloud.com/n/ax6ygfvpvzka/b/open-modeldb-files/o/4x-DWTP-DS-dat2-v3.pth", # https://openmodeldb.info/models/4x-DWTP-DS-dat2-v3
"4x_IllustrationJaNai_V1_DAT2_190k.pth": "https://drive.google.com/uc?export=download&confirm=1&id=1qpioSqBkB_IkSBhEAewSSNFt6qgkBimP", # https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2
# HAT
"4xNomos8kSCHAT-L.pth": "https://github.com/Phhofm/models/releases/download/4xNomos8kSCHAT/4xNomos8kSCHAT-L.pth", # https://openmodeldb.info/models/4x-Nomos8kSCHAT-L
"4xNomos8kSCHAT-S.pth": "https://github.com/Phhofm/models/releases/download/4xNomos8kSCHAT/4xNomos8kSCHAT-S.pth", # https://openmodeldb.info/models/4x-Nomos8kSCHAT-S
"4xNomos8kHAT-L_otf.pth": "https://github.com/Phhofm/models/releases/download/4xNomos8kHAT-L_otf/4xNomos8kHAT-L_otf.pth", # https://openmodeldb.info/models/4x-Nomos8kHAT-L-otf
# RealPLKSR_dysample
"4xHFA2k_ludvae_realplksr_dysample.pth": "https://github.com/Phhofm/models/releases/download/4xHFA2k_ludvae_realplksr_dysample/4xHFA2k_ludvae_realplksr_dysample.pth", # https://openmodeldb.info/models/4x-HFA2k-ludvae-realplksr-dysample
"4xArtFaces_realplksr_dysample.pth": "https://github.com/Phhofm/models/releases/download/4xArtFaces_realplksr_dysample/4xArtFaces_realplksr_dysample.pth", # https://openmodeldb.info/models/4x-ArtFaces-realplksr-dysample
"4x-PBRify_RPLKSRd_V3.pth": "https://github.com/Kim2091/Kim2091-Models/releases/download/4x-PBRify_RPLKSRd_V3/4x-PBRify_RPLKSRd_V3.pth", # https://openmodeldb.info/models/4x-PBRify-RPLKSRd-V3
"4xNomos2_realplksr_dysample.pth": "https://github.com/Phhofm/models/releases/download/4xNomos2_realplksr_dysample/4xNomos2_realplksr_dysample.pth", # https://openmodeldb.info/models/4x-Nomos2-realplksr-dysample
# RealPLKSR
"2x-AnimeSharpV2_RPLKSR_Sharp.pth": "https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_RPLKSR_Sharp.pth", # https://openmodeldb.info/models/2x-AnimeSharpV2-RPLKSR-Sharp
"2x-AnimeSharpV2_RPLKSR_Soft.pth": "https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_RPLKSR_Soft.pth", # https://openmodeldb.info/models/2x-AnimeSharpV2-RPLKSR-Soft
"4xPurePhoto-RealPLSKR.pth": "https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/4xPurePhoto-RealPLSKR.pth", # https://openmodeldb.info/models/4x-PurePhoto-RealPLSKR
"2x_Text2HD_v.1-RealPLKSR.pth": "https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/2x_Text2HD_v.1-RealPLKSR.pth", # https://openmodeldb.info/models/2x-Text2HD-v-1
"2xVHS2HD-RealPLKSR.pth": "https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/2xVHS2HD-RealPLKSR.pth", # https://openmodeldb.info/models/2x-VHS2HD
"4xNomosWebPhoto_RealPLKSR.pth": "https://github.com/Phhofm/models/releases/download/4xNomosWebPhoto_RealPLKSR/4xNomosWebPhoto_RealPLKSR.pth", # https://openmodeldb.info/models/4x-NomosWebPhoto-RealPLKSR
}
files_to_download = {
"a1.jpg":
"https://thumbs.dreamstime.com/b/tower-bridge-traditional-red-bus-black-white-colors-view-to-tower-bridge-london-black-white-colors-108478942.jpg",
"a2.jpg":
"https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=",
"a3.jpg":
"https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202",
"a4.jpg":
"https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg",
}
def get_model_type(model_name):
# Define model type mappings based on key parts of the model names
model_type = "other"
if any(value in model_name.lower() for value in ("realesrgan", "realesrnet")):
model_type = "RRDB"
elif "realesr" in model_name.lower() in model_name.lower():
model_type = "SRVGG"
elif "esrgan" in model_name.lower() or "4x-AnimeSharp.pth" == model_name:
model_type = "ESRGAN"
elif "dat" in model_name.lower():
model_type = "DAT"
elif "hat" in model_name.lower():
model_type = "HAT"
elif ("realplksr" in model_name.lower() and "dysample" in model_name.lower()) or "rplksrd" in model_name.lower():
model_type = "RealPLKSR_dysample"
elif "realplksr" in model_name.lower() or "rplksr" in model_name.lower():
model_type = "RealPLKSR"
return f"{model_type}, {model_name}"
typed_realesr_model = {get_model_type(key): value for key, value in realesr_model.items()}
def download_from_urls(urls, save_dir=None):
for file_name, url in urls.items():
download_from_url(url, file_name, save_dir)
class Upscale:
def inference(self, img, face_restoration, realesr, scale: float):
print(img)
print(face_restoration, realesr, scale)
try:
self.scale = scale
self.img_name = os.path.basename(str(img))
self.basename, self.extension = os.path.splitext(self.img_name)
img = cv2.imdecode(np.fromfile(img, np.uint8), cv2.IMREAD_UNCHANGED) # cv2.imread(img, cv2.IMREAD_UNCHANGED)
self.img_mode = "RGBA" if len(img.shape) == 3 and img.shape[2] == 4 else None
if len(img.shape) == 2: # for gray inputs
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if face_restoration:
download_from_url(face_model[face_restoration], face_restoration, os.path.join("weights", "face"))
if realesr:
realesr_type, realesr = realesr.split(", ", 1)
download_from_url(realesr_model[realesr], realesr, os.path.join("weights", "realesr"))
netscale = 4
loadnet = None
model = None
is_auto_split_upscale = True
half = True if torch.cuda.is_available() else False
if realesr_type:
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.realplksr_arch import realplksr
# background enhancer with RealESRGAN
if realesr_type == "RRDB":
netscale = 2 if "x2" in realesr else 4
num_block = 6 if "6B" in realesr else 23
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=num_block, num_grow_ch=32, scale=netscale)
elif realesr_type == "SRVGG":
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
netscale = 4
num_conv = 16 if "animevideov3" in realesr else 32
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=netscale, act_type='prelu')
elif realesr_type == "ESRGAN":
netscale = 4
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=netscale)
loadnet = {}
loadnet_origin = torch.load(os.path.join("weights", "realesr", realesr), map_location=torch.device('cpu'), weights_only=True)
for key, value in loadnet_origin.items():
new_key = key.replace("model.0", "conv_first").replace("model.1.sub.23.", "conv_body.").replace("model.1.sub", "body") \
.replace(".0.weight", ".weight").replace(".0.bias", ".bias").replace(".RDB1.", ".rdb1.").replace(".RDB2.", ".rdb2.").replace(".RDB3.", ".rdb3.") \
.replace("model.3.", "conv_up1.").replace("model.6.", "conv_up2.").replace("model.8.", "conv_hr.").replace("model.10.", "conv_last.")
loadnet[new_key] = value
elif realesr_type == "DAT":
from basicsr.archs.dat_arch import DAT
half = False
netscale = 4
expansion_factor = 2. if "dat2" in realesr.lower() else 4.
model = DAT(img_size=64, in_chans=3, embed_dim=180, split_size=[8,32], depth=[6,6,6,6,6,6], num_heads=[6,6,6,6,6,6], expansion_factor=expansion_factor, upscale=netscale)
# # Speculate on the parameters.
# loadnet_origin = torch.load(os.path.join("weights", "realesr", realesr), map_location=torch.device('cpu'), weights_only=True)
# inferred_params = self.infer_parameters_from_state_dict_for_dat(loadnet_origin, netscale)
# for param, value in inferred_params.items():
# print(f"{param}: {value}")
elif realesr_type == "HAT":
half = False
netscale = 4
import torch.nn.functional as F
from basicsr.archs.hat_arch import HAT
class HATWithAutoPadding(HAT):
def pad_to_multiple(self, img, multiple):
"""
Fill the image to multiples of both width and height as integers.
"""
_, _, h, w = img.shape
pad_h = (multiple - h % multiple) % multiple
pad_w = (multiple - w % multiple) % multiple
# Padding on the top, bottom, left, and right.
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
img_padded = F.pad(img, (pad_left, pad_right, pad_top, pad_bottom), mode="reflect")
return img_padded, (pad_top, pad_bottom, pad_left, pad_right)
def remove_padding(self, img, pad_info):
"""
Remove padding and restore to the original size, considering upscaling.
"""
pad_top, pad_bottom, pad_left, pad_right = pad_info
# Adjust padding based on upscaling factor
pad_top = int(pad_top * self.upscale)
pad_bottom = int(pad_bottom * self.upscale)
pad_left = int(pad_left * self.upscale)
pad_right = int(pad_right * self.upscale)
return img[:, :, pad_top:-pad_bottom if pad_bottom > 0 else None, pad_left:-pad_right if pad_right > 0 else None]
def forward(self, x):
# Step 1: Auto padding
x_padded, pad_info = self.pad_to_multiple(x, self.window_size)
# Step 2: Normal model processing
x_processed = super().forward(x_padded)
# Step 3: Remove padding
x_cropped = self.remove_padding(x_processed, pad_info)
return x_cropped
# The parameters are derived from the XPixelGroup project files: HAT-L_SRx4_ImageNet-pretrain.yml and HAT-S_SRx4.yml.
# https://github.com/XPixelGroup/HAT/tree/main/options/test
if "hat-l" in realesr.lower():
window_size = 16
compress_ratio = 3
squeeze_factor = 30
depths = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
embed_dim = 180
num_heads = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
mlp_ratio = 2
upsampler = "pixelshuffle"
elif "hat-s" in realesr.lower():
window_size = 16
compress_ratio = 24
squeeze_factor = 24
depths = [6, 6, 6, 6, 6, 6]
embed_dim = 144
num_heads = [6, 6, 6, 6, 6, 6]
mlp_ratio = 2
upsampler = "pixelshuffle"
model = HATWithAutoPadding(img_size=64, patch_size=1, in_chans=3, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, compress_ratio=compress_ratio,
squeeze_factor=squeeze_factor, conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=mlp_ratio, upsampler=upsampler, upscale=netscale,)
elif realesr_type == "RealPLKSR_dysample":
netscale = 4
model = realplksr(upscaling_factor=netscale, dysample=True)
elif realesr_type == "RealPLKSR":
half = False if "RealPLSKR" in realesr else half
netscale = 2 if realesr.startswith("2x") else 4
model = realplksr(dim=64, n_blocks=28, kernel_size=17, split_ratio=0.25, upscaling_factor=netscale)
self.upsampler = None
if loadnet:
self.upsampler = RealESRGANer(scale=netscale, loadnet=loadnet, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
elif model:
self.upsampler = RealESRGANer(scale=netscale, model_path=os.path.join("weights", "realesr", realesr), model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
elif realesr:
self.upsampler = None
import PIL
from image_gen_aux import UpscaleWithModel
class UpscaleWithModel_Gfpgan(UpscaleWithModel):
def cv2pil(self, image):
''' OpenCV type -> PIL type
https://qiita.com/derodero24/items/f22c22b22451609908ee
'''
new_image = image.copy()
if new_image.ndim == 2: # Grayscale
pass
elif new_image.shape[2] == 3: # Color
new_image = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)
elif new_image.shape[2] == 4: # Transparency
new_image = cv2.cvtColor(new_image, cv2.COLOR_BGRA2RGBA)
new_image = PIL.Image.fromarray(new_image)
return new_image
def pil2cv(self, image):
''' PIL type -> OpenCV type
https://qiita.com/derodero24/items/f22c22b22451609908ee
'''
new_image = np.array(image, dtype=np.uint8)
if new_image.ndim == 2: # Grayscale
pass
elif new_image.shape[2] == 3: # Color
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
elif new_image.shape[2] == 4: # Transparency
new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
return new_image
def enhance(self, img, outscale=None):
# img: numpy
h_input, w_input = img.shape[0:2]
pil_img = self.cv2pil(img)
pil_img = self.__call__(pil_img)
cv_image = self.pil2cv(pil_img)
if outscale is not None and outscale != float(netscale):
cv_image = cv2.resize(
cv_image, (
int(w_input * outscale),
int(h_input * outscale),
), interpolation=cv2.INTER_LANCZOS4)
return cv_image, None
device = "cuda" if torch.cuda.is_available() else "cpu"
upscaler = UpscaleWithModel.from_pretrained(os.path.join("weights", "realesr", realesr)).to(device)
upscaler.__class__ = UpscaleWithModel_Gfpgan
self.upsampler = upscaler
self.face_enhancer = None
if face_restoration:
from gfpgan.utils import GFPGANer
if face_restoration and face_restoration.startswith("GFPGANv1."):
self.face_enhancer = GFPGANer(model_path=os.path.join("weights", "face", face_restoration), upscale=self.scale, arch="clean", channel_multiplier=2, bg_upsampler=self.upsampler)
elif face_restoration and face_restoration.startswith("RestoreFormer"):
arch = "RestoreFormer++" if face_restoration.startswith("RestoreFormer++") else "RestoreFormer"
self.face_enhancer = GFPGANer(model_path=os.path.join("weights", "face", face_restoration), upscale=self.scale, arch=arch, channel_multiplier=2, bg_upsampler=self.upsampler)
elif face_restoration == 'CodeFormer.pth':
self.face_enhancer = GFPGANer(
model_path='weights/CodeFormer.pth', upscale=self.scale, arch='CodeFormer', channel_multiplier=2, bg_upsampler=self.upsampler)
files = []
outputs = []
try:
bg_upsample_img = None
if self.upsampler and self.upsampler.enhance:
from utils.dataops import auto_split_upscale
bg_upsample_img, _ = auto_split_upscale(img, self.upsampler.enhance, self.scale) if is_auto_split_upscale else self.upsampler.enhance(img, outscale=self.scale)
if self.face_enhancer:
cropped_faces, restored_aligned, bg_upsample_img = self.face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, bg_upsample_img=bg_upsample_img)
# save faces
if cropped_faces and restored_aligned:
for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_aligned)):
# save cropped face
save_crop_path = f"output/{self.basename}{idx:02d}_cropped_faces.png"
self.imwriteUTF8(save_crop_path, cropped_face)
# save restored face
save_restore_path = f"output/{self.basename}{idx:02d}_restored_faces.png"
self.imwriteUTF8(save_restore_path, restored_face)
# save comparison image
save_cmp_path = f"output/{self.basename}{idx:02d}_cmp.png"
cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
self.imwriteUTF8(save_cmp_path, cmp_img)
files.append(save_crop_path)
files.append(save_restore_path)
files.append(save_cmp_path)
outputs.append(cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB))
outputs.append(cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB))
outputs.append(cv2.cvtColor(cmp_img, cv2.COLOR_BGR2RGB))
restored_img = bg_upsample_img
except RuntimeError as error:
print(traceback.format_exc())
print('Error', error)
finally:
if self.face_enhancer:
self.face_enhancer._cleanup()
else:
# Free GPU memory and clean up resources
torch.cuda.empty_cache()
gc.collect()
if not self.extension:
self.extension = ".png" if self.img_mode == "RGBA" else ".jpg" # RGBA images should be saved in png format
save_path = f"output/{self.basename}{self.extension}"
self.imwriteUTF8(save_path, restored_img)
restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
files.append(save_path)
outputs.append(restored_img)
return outputs, files
except Exception as error:
print(traceback.format_exc())
print("global exception", error)
return None, None
def infer_parameters_from_state_dict_for_dat(self, state_dict, upscale=4):
if "params" in state_dict:
state_dict = state_dict["params"]
elif "params_ema" in state_dict:
state_dict = state_dict["params_ema"]
inferred_params = {}
# Speculate on the depth.
depth = {}
for key in state_dict.keys():
if "blocks" in key:
layer = int(key.split(".")[1])
block = int(key.split(".")[3])
depth[layer] = max(depth.get(layer, 0), block + 1)
inferred_params["depth"] = [depth[layer] for layer in sorted(depth.keys())]
# Speculate on the number of num_heads per layer.
# ex.
# layers.0.blocks.1.attn.temperature: torch.Size([6, 1, 1])
# layers.5.blocks.5.attn.temperature: torch.Size([6, 1, 1])
# The shape of temperature is [num_heads, 1, 1].
num_heads = []
for layer in range(len(inferred_params["depth"])):
for block in range(inferred_params["depth"][layer]):
key = f"layers.{layer}.blocks.{block}.attn.temperature"
if key in state_dict:
num_heads_layer = state_dict[key].shape[0]
num_heads.append(num_heads_layer)
break
inferred_params["num_heads"] = num_heads
# Speculate on embed_dim.
# ex. layers.0.blocks.0.attn.qkv.weight: torch.Size([540, 180])
for key in state_dict.keys():
if "attn.qkv.weight" in key:
qkv_weight = state_dict[key]
embed_dim = qkv_weight.shape[1] # Note: The in_features of qkv corresponds to embed_dim.
inferred_params["embed_dim"] = embed_dim
break
# Speculate on split_size.
# ex.
# layers.0.blocks.0.attn.attns.0.rpe_biases: torch.Size([945, 2])
# layers.0.blocks.0.attn.attns.0.relative_position_index: torch.Size([256, 256])
# layers.0.blocks.2.attn.attn_mask_0: torch.Size([16, 256, 256])
# layers.0.blocks.2.attn.attn_mask_1: torch.Size([16, 256, 256])
for key in state_dict.keys():
if "relative_position_index" in key:
relative_position_size = state_dict[key].shape[0]
# Determine split_size[0] and split_size[1] based on the provided data.
split_size_0, split_size_1 = 8, relative_position_size // 8 # 256 = 8 * 32
inferred_params["split_size"] = [split_size_0, split_size_1]
break
# Speculate on the expansion_factor.
# ex.
# layers.0.blocks.0.ffn.fc1.weight: torch.Size([360, 180])
# layers.5.blocks.5.ffn.fc1.weight: torch.Size([360, 180])
if "embed_dim" in inferred_params:
for key in state_dict.keys():
if "ffn.fc1.weight" in key:
fc1_weight = state_dict[key]
expansion_factor = fc1_weight.shape[0] // inferred_params["embed_dim"]
inferred_params["expansion_factor"] = expansion_factor
break
inferred_params["img_size"] = 64
inferred_params["in_chans"] = 3 # Assume an RGB image.
for key in state_dict.keys():
print(f"{key}: {state_dict[key].shape}")
return inferred_params
def imwriteUTF8(self, save_path, image): # `cv2.imwrite` does not support writing files to UTF-8 file paths.
img_name = os.path.basename(save_path)
_, extension = os.path.splitext(img_name)
is_success, im_buf_arr = cv2.imencode(extension, image)
if (is_success): im_buf_arr.tofile(save_path)
def main():
if torch.cuda.is_available():
torch.cuda.set_per_process_memory_fraction(0.975, device='cuda:0')
# Ensure the target directory exists
os.makedirs('output', exist_ok=True)
# Iterate through each file
download_from_urls(files_to_download, ".")
title = "Image Upscaling & Restoration(esp. Face) using GFPGAN Algorithm"
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior</b></a>.<br>
Practically the algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
To use it, simply just upload the concerned image.<br>
"""
article = r"""
[](https://github.com/TencentARC/GFPGAN/releases)
[](https://github.com/TencentARC/GFPGAN)
[](https://arxiv.org/abs/2101.04061)
<center><img src='https://visitor-badge.glitch.me/badge?page_id=dj_face_restoration_GFPGAN' alt='visitor badge'></center>
"""
upscale = Upscale()
demo = gr.Interface(
upscale.inference, [
gr.Image(type="filepath", label="Input", format="png"),
gr.Dropdown(list(face_model.keys())+[None], type="value", value='GFPGANv1.4.pth', label='Face Restoration version', info="Face Restoration and RealESR can be freely combined in different ways, or one can be set to \"None\" to use only the other model. Face Restoration is primarily used for face restoration in real-life images, while RealESR serves as a background restoration model."),
gr.Dropdown(list(typed_realesr_model.keys())+[None], type="value", value='SRVGG, realesr-general-x4v3.pth', label='RealESR version'),
gr.Number(label="Rescaling factor", value=4),
], [
gr.Gallery(type="numpy", label="Output (The whole image)", format="png"),
gr.File(label="Download the output image")
],
title=title,
description=description,
article=article,
examples=[["a1.jpg", "GFPGANv1.4.pth", "SRVGG, realesr-general-x4v3.pth", 2],
["a2.jpg", "GFPGANv1.4.pth", "SRVGG, realesr-general-x4v3.pth", 2],
["a3.jpg", "GFPGANv1.4.pth", "SRVGG, realesr-general-x4v3.pth", 2],
["a4.jpg", "GFPGANv1.4.pth", "SRVGG, realesr-general-x4v3.pth", 2]])
demo.queue(default_concurrency_limit=4)
demo.launch(inbrowser=True)
if __name__ == "__main__":
main() |