import gradio as gr import librosa import numpy as np import re import os import time import struct import subprocess import soundfile as sf import matplotlib.font_manager as fm from PIL import ImageFont from typing import Tuple, List, Dict, Set from mutagen.flac import FLAC from moviepy import CompositeVideoClip, TextClip, VideoClip, AudioFileClip, ImageClip # --- Font Scanning and Management --- def get_font_display_name(font_path: str) -> Tuple[str, str]: """ A robust TTF/TTC parser based on the user's final design. It reads the 'name' table to find the localized "Full Font Name" (nameID=4). Returns a tuple of (display_name, language_tag {'zh'/'ja'/'ko'/'en'/'other'}). """ def decode_name_string(name_bytes: bytes, platform_id: int, encoding_id: int) -> str: """Decodes the name string based on platform and encoding IDs.""" try: if platform_id == 3 and encoding_id in [1, 10]: # Windows, Unicode return name_bytes.decode('utf_16_be').strip('\x00') elif platform_id == 1 and encoding_id == 0: # Macintosh, Roman return name_bytes.decode('mac_roman').strip('\x00') elif platform_id == 0: # Unicode return name_bytes.decode('utf_16_be').strip('\x00') else: # Fallback return name_bytes.decode('utf_8', errors='ignore').strip('\x00') except Exception: return None try: with open(font_path, 'rb') as f: data = f.read() def read_ushort(offset): return struct.unpack('>H', data[offset:offset+2])[0] def read_ulong(offset): return struct.unpack('>I', data[offset:offset+4])[0] font_offsets = [0] # Check for TTC (TrueType Collection) header if data[:4] == b'ttcf': num_fonts = read_ulong(8) font_offsets = [read_ulong(12 + i * 4) for i in range(num_fonts)] # For simplicity, we only parse the first font in a TTC font_offset = font_offsets[0] num_tables = read_ushort(font_offset + 4) name_table_offset = -1 # Locate the 'name' table for i in range(num_tables): entry_offset = font_offset + 12 + i * 16 tag = data[entry_offset:entry_offset+4] if tag == b'name': name_table_offset = read_ulong(entry_offset + 8) break if name_table_offset == -1: return None, None count, string_offset = read_ushort(name_table_offset + 2), read_ushort(name_table_offset + 4) name_candidates = {} # Iterate through all name records for i in range(count): rec_offset = name_table_offset + 6 + i * 12 platform_id, encoding_id, language_id, name_id, length, offset = struct.unpack('>HHHHHH', data[rec_offset:rec_offset+12]) if name_id == 4: # We only care about the "Full Font Name" string_pos = name_table_offset + string_offset + offset value = decode_name_string(data[string_pos : string_pos + length], platform_id, encoding_id) if value: # Store candidates based on language ID if language_id in [1028, 2052, 3076, 4100, 5124]: name_candidates["zh"] = value elif language_id == 1041: name_candidates["ja"] = value elif language_id == 1042: name_candidates["ko"] = value elif language_id in [1033, 0]: name_candidates["en"] = value else: if "other" not in name_candidates: name_candidates["other"] = value # Return the best candidate based on language priority if name_candidates.get("zh"): return name_candidates.get("zh"), "zh" if name_candidates.get("ja"): return name_candidates.get("ja"), "ja" if name_candidates.get("ko"): return name_candidates.get("ko"), "ko" if name_candidates.get("other"): return name_candidates.get("other"), "other" if name_candidates.get("en"): return name_candidates.get("en"), "en" return None, None except Exception: return None, None def get_font_data() -> Tuple[Dict[str, str], List[str]]: """ Scans system fonts, parses their display names, and returns a sorted list with a corresponding name-to-path map. """ font_map = {} found_names = [] # Stores (display_name, is_fallback, lang_tag) # Scan for both .ttf and .ttc files ttf_files = fm.findSystemFonts(fontpaths=None, fontext='ttf') ttc_files = fm.findSystemFonts(fontpaths=None, fontext='ttc') all_font_files = list(set(ttf_files + ttc_files)) for path in all_font_files: display_name, lang_tag = get_font_display_name(path) is_fallback = display_name is None if is_fallback: # Create a fallback name from the filename display_name = os.path.splitext(os.path.basename(path))[0].replace('-', ' ').replace('_', ' ').title() lang_tag = 'fallback' if display_name and display_name not in font_map: font_map[display_name] = path found_names.append((display_name, is_fallback, lang_tag)) # Define sort priority for languages sort_order = {'zh': 0, 'ja': 1, 'ko': 2, 'en': 3, 'other': 4, 'fallback': 5} # Sort by priority, then alphabetically found_names.sort(key=lambda x: (sort_order.get(x[2], 99), x[0])) sorted_display_names = [name for name, _, _ in found_names] return font_map, sorted_display_names print("Scanning system fonts and parsing names...") SYSTEM_FONTS_MAP, FONT_DISPLAY_NAMES = get_font_data() print(f"Scan complete. Found {len(FONT_DISPLAY_NAMES)} available fonts.") # --- CUE Sheet Parsing Logic --- def cue_time_to_seconds(time_str: str) -> float: try: minutes, seconds, frames = map(int, time_str.split(':')) return minutes * 60 + seconds + frames / 75.0 except ValueError: return 0.0 def parse_cue_sheet_manually(cue_data: str) -> List[Dict[str, any]]: tracks = [] current_track_info = None for line in cue_data.splitlines(): line = line.strip() if line.upper().startswith('TRACK'): if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info: tracks.append(current_track_info) current_track_info = {} continue if current_track_info is not None: title_match = re.search(r'TITLE\s+"(.*?)"', line, re.IGNORECASE) if title_match: current_track_info['title'] = title_match.group(1) continue index_match = re.search(r'INDEX\s+01\s+(\d{2}:\d{2}:\d{2})', line, re.IGNORECASE) if index_match: current_track_info['start_time'] = cue_time_to_seconds(index_match.group(1)) continue if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info: tracks.append(current_track_info) return tracks # --- FFmpeg Framerate Conversion --- def increase_video_framerate(input_path: str, output_path: str, target_fps: int = 24): """ Uses FFmpeg to increase the video's framerate without re-encoding. This is extremely fast as it only copies streams and changes metadata. Args: input_path (str): Path to the low-framerate video file. output_path (str): Path for the final, high-framerate video file. target_fps (int): The desired output framerate. """ print(f"Increasing framerate of '{input_path}' to {target_fps} FPS...") # Construct the FFmpeg command based on the user's specification command = [ 'ffmpeg', '-y', # Overwrite output file if exists '-i', input_path, '-map', '0', # Map all streams (video, audio, subtitles) '-vf', f'fps={target_fps}', # Use fps filter to convert framerate to 24 '-c:v', 'libx264', # Re-encode video with H.264 codec '-preset', 'fast', # Encoding speed/quality tradeoff '-crf', '18', # Quality (lower is better) '-c:a', 'copy', # Copy audio without re-encoding output_path ] try: # Execute the command # Using capture_output to hide ffmpeg logs from the main console unless an error occurs result = subprocess.run(command, check=True, capture_output=True, text=True) print("Framerate increase successful.") except FileNotFoundError: # This error occurs if FFmpeg is not installed or not in the system's PATH raise gr.Error("FFmpeg not found. Please ensure FFmpeg is installed and accessible in your system's PATH.") except subprocess.CalledProcessError as e: # This error occurs if FFmpeg returns a non-zero exit code print("FFmpeg error output:\n", e.stderr) raise gr.Error(f"FFmpeg failed to increase the framerate. See console for details. Error: {e.stderr}") # --- HELPER FUNCTION for parsing track ranges --- def parse_track_ranges(range_str: str) -> Set[int]: """Parses a string like '1-4, 7, 10-13' into a set of integers.""" if not range_str: return set() indices = set() parts = range_str.split(',') for part in parts: part = part.strip() if not part: continue if '-' in part: try: start, end = map(int, part.split('-')) indices.update(range(start, end + 1)) except ValueError: print(f"Warning: Could not parse range '{part}'. Skipping.") else: try: indices.add(int(part)) except ValueError: print(f"Warning: Could not parse track number '{part}'. Skipping.") return indices # --- Main Processing Function --- def process_audio_to_video(*args, progress=gr.Progress(track_tqdm=True)): # --- Correctly unpack all arguments from *args using slicing --- MAX_GROUPS = 10 # This MUST match the UI definition # Define the structure of the *args tuple based on the `all_inputs` list audio_files = args[0] # Slice the args tuple to get the continuous blocks of inputs all_track_strs = args[1 : 1 + MAX_GROUPS] all_image_lists = args[1 + MAX_GROUPS : 1 + MAX_GROUPS * 2] # Group inputs are packed in pairs (track_str, image_list) group_definitions = [] for i in range(MAX_GROUPS): group_definitions.append({ "tracks_str": all_track_strs[i], "images": all_image_lists[i] }) # Unpack the remaining arguments with correct indexing arg_offset = 1 + MAX_GROUPS * 2 fallback_images = args[arg_offset] format_double_digits = args[arg_offset + 1] video_width = args[arg_offset + 2] video_height = args[arg_offset + 3] spec_fg_color = args[arg_offset + 4] spec_bg_color = args[arg_offset + 5] # --- NEW: Unpack spectrogram style arguments --- n_bands = int(args[arg_offset + 6]) bar_spacing = int(args[arg_offset + 7]) mirror_mode = args[arg_offset + 8] # This is now a string bar_style = args[arg_offset + 9] num_blocks = int(args[arg_offset + 10]) # --- Unpack font and text arguments (indices are shifted) --- font_name = args[arg_offset + 11] font_size = args[arg_offset + 12] font_color = args[arg_offset + 13] font_bg_color = args[arg_offset + 14] font_bg_alpha = args[arg_offset + 15] pos_h = args[arg_offset + 16] pos_v = args[arg_offset + 17] if not audio_files: raise gr.Error("Please upload at least one audio file.") if not font_name: raise gr.Error("Please select a font from the list.") progress(0, desc="Initializing...") # Define paths for temporary and final files timestamp = int(time.time()) temp_fps1_path = f"temp_{timestamp}_fps1.mp4" temp_audio_path = f"temp_combined_audio_{timestamp}.wav" final_output_path = f"final_video_{timestamp}_fps24.mp4" WIDTH, HEIGHT = int(video_width), int(video_height) RENDER_FPS = 1 # Render at 1 FPS PLAYBACK_FPS = 24 # Final playback framerate # --- A robust color parser for hex and rgb() strings --- def parse_color_to_rgb(color_str: str) -> Tuple[int, int, int]: """ Parses a color string which can be in hex format (#RRGGBB) or rgb format (e.g., "rgb(255, 128, 0)"). Returns a tuple of (R, G, B). """ color_str = color_str.strip() if color_str.startswith('#'): # Handle hex format hex_val = color_str.lstrip('#') if len(hex_val) == 3: # Handle shorthand hex like #FFF hex_val = "".join([c*2 for c in hex_val]) return tuple(int(hex_val[i:i+2], 16) for i in (0, 2, 4)) elif color_str.startswith('rgb'): # Handle rgb format try: numbers = re.findall(r'\d+', color_str) return tuple(int(n) for n in numbers[:3]) except (ValueError, IndexError): raise ValueError(f"Could not parse rgb color string: {color_str}") else: raise ValueError(f"Unknown color format: {color_str}") # Use the new robust parser for all color inputs fg_rgb, bg_rgb = parse_color_to_rgb(spec_fg_color), parse_color_to_rgb(spec_bg_color) grid_rgb = tuple(min(c + 40, 255) for c in bg_rgb) # Wrap the entire process in a try...finally block to ensure cleanup try: # --- Define total steps for the progress bar --- TOTAL_STEPS = 5 # --- Stage 1: Audio Processing & Master Track List Creation --- master_track_list, y_accumulator, current_sr = [], [], None total_duration, global_track_counter = 0.0, 0 # --- Use `progress.tqdm` to create a progress bar for this loop --- for file_idx, audio_path in enumerate(progress.tqdm(audio_files, desc=f"Stage 1/{TOTAL_STEPS}: Analyzing Audio Files")): # --- Load audio as stereo (or its original channel count) --- y, sr = librosa.load(audio_path, sr=None, mono=False) # If loaded audio is mono (1D array), convert it to a 2D stereo array # by duplicating the channel. This ensures all arrays can be concatenated. if y.ndim == 1: print(f" - Converting mono file to stereo: {os.path.basename(audio_path)}") y = np.stack([y, y]) if current_sr is None: current_sr = sr if current_sr != sr: print(f"Warning: Sample rate mismatch for {os.path.basename(audio_path)}. Expected {current_sr}Hz, found {sr}Hz.") print(f"Resampling from {sr}Hz to {current_sr}Hz...") y = librosa.resample(y, orig_sr=sr, target_sr=current_sr) y_accumulator.append(y) # Use the first channel (y[0]) for duration calculation, which is standard practice file_duration = librosa.get_duration(y=y[0], sr=current_sr) # First, try to parse the CUE sheet from the audio file. cue_tracks = [] if audio_path.lower().endswith('.flac'): try: audio_meta = FLAC(audio_path) if 'cuesheet' in audio_meta.tags: cue_tracks = parse_cue_sheet_manually(audio_meta.tags['cuesheet'][0]) print(f"Successfully parsed {len(cue_tracks)} tracks from CUE sheet.") except Exception as e: print(f"Warning: Could not parse CUE sheet for {os.path.basename(audio_path)}: {e}") if cue_tracks: for track_idx, track in enumerate(cue_tracks): global_track_counter += 1 start_time = track.get('start_time', 0) end_time = cue_tracks[track_idx+1].get('start_time', file_duration) if track_idx + 1 < len(cue_tracks) else file_duration master_track_list.append({"global_index": global_track_counter, "title": track.get('title', 'Unknown'), "start_time": total_duration + start_time, "end_time": total_duration + end_time}) else: global_track_counter += 1 master_track_list.append({"global_index": global_track_counter, "title": os.path.splitext(os.path.basename(audio_path))[0], "start_time": total_duration, "end_time": total_duration + file_duration}) total_duration += file_duration # --- Concatenate along the time axis (axis=1) for stereo arrays --- y_combined = np.concatenate(y_accumulator, axis=1) duration = total_duration # --- Transpose the array for soundfile to write stereo correctly --- sf.write(temp_audio_path, y_combined.T, current_sr) print(f"Combined all audio files into one. Total duration: {duration:.2f}s") # --- Update progress to the next stage, use fractional progress (current/total) --- progress(1 / TOTAL_STEPS, desc=f"Stage 2/{TOTAL_STEPS}: Mapping Images to Tracks") # --- Stage 2: Map Tracks to Image Groups --- parsed_groups = [parse_track_ranges(g['tracks_str']) for g in group_definitions] track_to_images_map = {} for track_info in master_track_list: track_idx = track_info['global_index'] assigned = False for i, group_indices in enumerate(parsed_groups): if track_idx in group_indices: track_to_images_map[track_idx] = group_definitions[i]['images'] assigned = True break if not assigned: track_to_images_map[track_idx] = fallback_images # --- Stage 3: Generate ImageClips based on contiguous blocks --- image_clips = [] if any(track_to_images_map.values()): current_track_cursor = 0 while current_track_cursor < len(master_track_list): start_track_info = master_track_list[current_track_cursor] image_set_for_block = track_to_images_map.get(start_track_info['global_index']) # Find the end of the contiguous block of tracks that use the same image set end_track_cursor = current_track_cursor while (end_track_cursor + 1 < len(master_track_list) and track_to_images_map.get(master_track_list[end_track_cursor + 1]['global_index']) == image_set_for_block): end_track_cursor += 1 end_track_info = master_track_list[end_track_cursor] block_start_time = start_track_info['start_time'] block_end_time = end_track_info['end_time'] block_duration = block_end_time - block_start_time if image_set_for_block and block_duration > 0: print(f"Creating image block for tracks {start_track_info['global_index']}-{end_track_info['global_index']} (Time: {block_start_time:.2f}s - {block_end_time:.2f}s)") time_per_image = block_duration / len(image_set_for_block) for i, img_path in enumerate(image_set_for_block): def create_image_layer(path, start, dur): try: img = ImageClip(path) scale = min(WIDTH/img.w, HEIGHT/img.h) resized_img = img.resized(scale) return CompositeVideoClip([resized_img.with_position("center")], size=(WIDTH, HEIGHT)).with_duration(dur).with_start(start) except Exception as e: print(f"Warning: Failed to process image '{path}'. Skipping. Error: {e}") return None clip = create_image_layer(img_path, block_start_time + i * time_per_image, time_per_image) if clip: image_clips.append(clip) current_track_cursor = end_track_cursor + 1 progress(2 / TOTAL_STEPS, desc=f"Stage 3/{TOTAL_STEPS}: Generating Text & Spectrogram") # --- Stage 4: Generate Text and Spectrogram --- # --- Text Overlay Logic using the aggregated track info text_clips = [] # Text clips are now simpler as they don't depend on complex file logic anymore font_path = SYSTEM_FONTS_MAP.get(font_name) if not font_path: raise gr.Error(f"Font path for '{font_name}' not found!") # Use the robust parser for text colors as well font_bg_rgb = parse_color_to_rgb(font_bg_color) position = (pos_h.lower(), pos_v.lower()) print(f"Using font: {font_name}, Size: {font_size}, Position: {position}") # Create the RGBA tuple for the background color. # The alpha value is converted from a 0.0-1.0 float to a 0-255 integer. bg_color_tuple = (font_bg_rgb[0], font_bg_rgb[1], font_bg_rgb[2], int(font_bg_alpha * 255)) # 1. Define a maximum width for the caption. 90% of the video width is a good choice. caption_width = int(WIDTH * 0.9) # --- Get font metrics to calculate dynamic padding --- try: # Load the font with Pillow to access its metrics pil_font = ImageFont.truetype(font_path, size=font_size) _, descent = pil_font.getmetrics() # Calculate a bottom margin to compensate for the font's descent. # A small constant is added as a safety buffer. # This prevents clipping on fonts with large descenders (like 'g', 'p'). bottom_margin = int(descent * 0.5) + 2 print(f"Font '{font_name}' descent: {descent}. Applying dynamic bottom margin of {bottom_margin}px.") except Exception as e: # Fallback in case of any font loading error print(f"Warning: Could not get font metrics for '{font_name}'. Using fixed margin. Error: {e}") bottom_margin = int(WIDTH * 0.01) # A small fixed fallback for track in master_track_list: text_duration = track['end_time'] - track['start_time'] if text_duration <= 0: continue # Construct display text based on pre-formatted number string num_str = f"{track['global_index']:02d}" if format_double_digits else str(track['global_index']) display_text = f"{num_str}. {track['title']}" # 1. Create the TextClip first without positioning to get its size txt_clip = TextClip( text=display_text.strip(), font_size=font_size, color=font_color, font=font_path, bg_color=bg_color_tuple, method='caption', # <-- Set method to caption size=(caption_width, None), # <-- Provide size for wrapping margin=(0, 0, 0, bottom_margin) ).with_position(position).with_duration(text_duration).with_start(track['start_time']) text_clips.append(txt_clip) N_FFT, HOP_LENGTH = 2048, 512 MIN_DB, MAX_DB = -80.0, 0.0 # Spectrogram calculation on combined audio # --- Create a mono version of audio specifically for the spectrogram --- # This resolves the TypeError while keeping the final audio in stereo. y_mono_for_spec = librosa.to_mono(y_combined) S_mel = librosa.feature.melspectrogram(y=y_mono_for_spec, sr=current_sr, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=n_bands, fmax=current_sr/2) S_mel_db = librosa.power_to_db(S_mel, ref=np.max) # --- Pre-calculate drawing parameters for stacked block style --- BLOCK_SPACING = 2 # The pixel gap between stacked blocks if bar_style == 'Stacked Blocks': # Calculate the total vertical space available for the blocks themselves # In mirrored mode, this is based on half the screen height if mirror_mode == 'Vertical (Left/Right)': drawable_size = WIDTH // 2 elif mirror_mode == 'Horizontal (Top/Bottom)': drawable_size = HEIGHT // 2 else: # Off drawable_size = HEIGHT total_block_pixel_size = drawable_size - ((num_blocks - 1) * BLOCK_SPACING) # Calculate the size of a single block single_block_size = total_block_pixel_size / num_blocks # Frame generation logic for the spectrogram def frame_generator(t): # If images are used as background, the spectrogram's own background should be transparent. # Otherwise, use the selected background color. # Here, we will use a simple opacity setting on the final clip, so we always generate the frame. frame_bg = bg_rgb if not image_clips else (0,0,0) # Use black if it will be made transparent later frame = np.full((HEIGHT, WIDTH, 3), frame_bg, dtype=np.uint8) # Draw the grid lines only if no images are being used. if not image_clips: for i in range(1, 9): y_pos = int(i * (HEIGHT / 9)); frame[y_pos-1:y_pos, :] = grid_rgb # 1. Safety Check: If the spectrogram has no time frames (e.g., from an extremely short audio file), # return a blank frame immediately to prevent an IndexError. if S_mel_db.shape[1] == 0: return frame # 2. Use librosa.time_to_frames to accurately convert the video time `t` # into a spectrogram frame index. This is far more reliable than manual scaling # and solves the problem of missing content on the rightmost side of the video. time_idx = librosa.time_to_frames(t, sr=current_sr, hop_length=HOP_LENGTH) # 3. Boundary Protection: Although time_to_frames is accurate, this extra `min` # call acts as a safeguard to ensure the index never exceeds the array's # maximum valid index, preventing any edge-case errors. time_idx = min(time_idx, S_mel_db.shape[1] - 1) # --- RENDER LOGIC FOR VERTICAL MIRROR --- if mirror_mode == 'Vertical (Left/Right)': center_x = WIDTH // 2 max_pixel_length = WIDTH // 2 bar_height = HEIGHT / n_bands for i in range(n_bands): energy_db = S_mel_db[i, time_idx] norm_height = np.clip((energy_db - MIN_DB) / (MAX_DB - MIN_DB), 0, 1) if norm_height == 0: continue # --- Calculate y-coords from bottom-to-top --- # This makes low frequencies appear at the bottom and high frequencies at the top. y_start = int(HEIGHT - (i + 1) * bar_height) y_end = int(HEIGHT - i * bar_height) # Apply spacing to create a gap above the current bar. y_start_with_spacing = y_start + bar_spacing # Ensure the bar still has visible height after spacing if y_start_with_spacing >= y_end: continue if bar_style == 'Stacked Blocks': blocks_to_draw = int(norm_height * num_blocks) if blocks_to_draw == 0: continue for j in range(blocks_to_draw): block_left_x = center_x + (j * (single_block_size + BLOCK_SPACING)) block_right_x = block_left_x + single_block_size # Draw right side frame[y_start_with_spacing:y_end, int(block_left_x):int(block_right_x)] = fg_rgb # Draw mirrored left side frame[y_start_with_spacing:y_end, int(center_x - (block_right_x - center_x)):int(center_x - (block_left_x - center_x))] = fg_rgb else: # Solid Bars bar_pixel_length = int(norm_height * max_pixel_length) if bar_pixel_length < 1: continue # Draw right side frame[y_start_with_spacing:y_end, center_x : center_x + bar_pixel_length] = fg_rgb # Draw mirrored left side frame[y_start_with_spacing:y_end, center_x - bar_pixel_length : center_x] = fg_rgb # --- RENDER LOGIC FOR HORIZONTAL MIRROR AND OFF --- else: bar_width = WIDTH / n_bands is_horizontal_mirror = (mirror_mode == 'Horizontal (Top/Bottom)') # Determine rendering parameters based on whether the view is mirrored if is_horizontal_mirror: center_y = HEIGHT // 2 max_pixel_height = HEIGHT // 2 else: # Off center_y = HEIGHT # The "center" is the bottom of the screen max_pixel_height = HEIGHT # Loop through each frequency band to draw its bar/blocks for i in range(n_bands): energy_db = S_mel_db[i, time_idx] # The denominator should be the range of DB values (MAX_DB - MIN_DB). # Since MAX_DB is 0, this simplifies to -MIN_DB, which is a positive 80.0. # This prevents the division by zero warning. norm_height = np.clip((energy_db - MIN_DB) / (MAX_DB - MIN_DB), 0, 1) if norm_height == 0: continue # Calculate the horizontal position of the current bar x_start = int(i * bar_width) x_end = int((i + 1) * bar_width - bar_spacing) # --- Main rendering logic: switches between styles --- if bar_style == 'Stacked Blocks': # Calculate how many blocks to draw based on energy blocks_to_draw = int(norm_height * num_blocks) if blocks_to_draw == 0: continue # Draw each block from the bottom up for j in range(blocks_to_draw): # Calculate the Y coordinates for this specific block block_bottom_y = center_y - (j * (single_block_size + BLOCK_SPACING)) block_top_y = block_bottom_y - single_block_size frame[int(block_top_y):int(block_bottom_y), x_start:x_end] = fg_rgb if is_horizontal_mirror: frame[int(center_y + (center_y - block_bottom_y)):int(center_y + (center_y - block_top_y)), x_start:x_end] = fg_rgb else: # Solid Bars # Calculate the total height of the solid bar bar_pixel_height = int(norm_height * max_pixel_height) if bar_pixel_height < 1: continue frame[center_y - bar_pixel_height : center_y, x_start:x_end] = fg_rgb if is_horizontal_mirror: frame[center_y : center_y + bar_pixel_height, x_start:x_end] = fg_rgb return frame video_clip = VideoClip(frame_function=frame_generator, duration=duration) # --- Set Spectrogram Opacity --- # If image clips were created, make the spectrogram layer 50% transparent. if image_clips: print("Applying 50% opacity to spectrogram layer.") video_clip = video_clip.with_opacity(0.5) # --- Use fractional progress (current/total) --- progress(3 / TOTAL_STEPS, desc=f"Stage 4/{TOTAL_STEPS}: Rendering Base Video") # --- Composition and Rendering --- audio_clip = AudioFileClip(temp_audio_path) # --- Clip Composition --- # The final composition order is important: images at the bottom, then spectrogram, then text. # The base layer is now the list of image clips. final_layers = image_clips + [video_clip] + text_clips final_clip = CompositeVideoClip(final_layers, size=(WIDTH, HEIGHT)).with_audio(audio_clip) # Step 1: Render the slow, 1 FPS intermediate file print(f"Step 1/2: Rendering base video at {RENDER_FPS} FPS...") try: # Attempt to copy audio stream directly print("Attempting to copy audio stream directly...") final_clip.write_videofile( temp_fps1_path, codec="libx264", audio_codec="copy", fps=RENDER_FPS, logger='bar', threads=os.cpu_count(), preset='ultrafast' ) print("Audio stream successfully copied!") except Exception: # Fallback to AAC encoding if copy fails print("Direct audio copy failed, falling back to high-quality AAC encoding...") final_clip.write_videofile( temp_fps1_path, codec="libx264", audio_codec="aac", audio_bitrate="320k", fps=RENDER_FPS, logger='bar', threads=os.cpu_count(), preset='ultrafast') print("High-quality AAC audio encoding complete.") final_clip.close() # Step 2: Use FFmpeg to quickly increase the framerate to 24 FPS print(f"\nStep 2/2: Remuxing video to {PLAYBACK_FPS} FPS...") # --- Use fractional progress (current/total) --- progress(4 / TOTAL_STEPS, desc=f"Stage 5/{TOTAL_STEPS}: Finalizing Video") # --- Finalizing --- increase_video_framerate(temp_fps1_path, final_output_path, target_fps=PLAYBACK_FPS) return final_output_path except Exception as e: # Re-raise the exception to be caught and displayed by Gradio raise e finally: # Step 3: Clean up the temporary file regardless of success or failure for f in [temp_fps1_path, temp_audio_path]: if os.path.exists(f): print(f"Cleaning up temporary file: {f}") os.remove(f) # --- Gradio UI --- with gr.Blocks(title="Spectrogram Video Generator") as iface: gr.Markdown("# Spectrogram Video Generator") with gr.Row(): with gr.Column(scale=1): # --- Changed to gr.Files for multi-upload --- audio_inputs = gr.Files( label="Upload Audio File(s)", file_count="multiple", file_types=["audio"] ) # --- Grouped Image Section --- with gr.Accordion("Grouped Image Backgrounds (Advanced)", open=False): gr.Markdown("Define groups of tracks and assign specific images to them. Tracks are numbered globally starting from 1 across all uploaded files.") MAX_GROUPS = 10 group_track_inputs = [] group_image_inputs = [] group_accordions = [] # --- Create a centralized update function --- def update_group_visibility(target_count: int): """Updates the visibility of all group accordions and the state of the control buttons.""" # Clamp the target count to be within bounds target_count = max(1, min(target_count, MAX_GROUPS)) updates = {visible_groups_state: target_count} # Update visibility for each accordion for i in range(MAX_GROUPS): updates[group_accordions[i]] = gr.update(visible=(i < target_count)) # Update button states updates[add_group_btn] = gr.update(visible=(target_count < MAX_GROUPS)) updates[remove_group_btn] = gr.update(interactive=(target_count > 1)) return updates # --- Create simple wrapper functions for adding and removing --- def add_group(current_count: int): return update_group_visibility(current_count + 1) def remove_group(current_count: int): return update_group_visibility(current_count - 1) # Pre-build all group components for i in range(MAX_GROUPS): with gr.Accordion(f"Image Group {i+1}", open=False, visible=(i==0)) as acc: track_input = gr.Textbox(label=f"Tracks for Group {i+1} (e.g., '1-4, 7')") image_input = gr.Files(label=f"Images for Group {i+1}", file_count="multiple", file_types=[".png", ".jpg", ".jpeg", ".webp", ".avif"]) group_track_inputs.append(track_input) group_image_inputs.append(image_input) group_accordions.append(acc) visible_groups_state = gr.State(1) # --- Add a remove button and put both in a row --- with gr.Row(): remove_group_btn = gr.Button("- Remove Last Group", variant="secondary", interactive=False) add_group_btn = gr.Button("+ Add Image Group", variant="secondary") with gr.Accordion("Fallback / Default Images", open=True): gr.Markdown("These images will be used for any tracks not assigned to a specific group above.") fallback_image_input = gr.Files(label="Fallback Images", file_count="multiple", file_types=[".png", ".jpg", ".jpeg", ".webp", ".avif"]) # --- Renamed for clarity --- with gr.Accordion("General Visualizer Options", open=True): with gr.Row(): width_input = gr.Number(value=1920, label="Video Width (px)", precision=0) height_input = gr.Number(value=1080, label="Video Height (px)", precision=0) fg_color = gr.ColorPicker(value="#71808c", label="Spectrogram Bar Color") bg_color = gr.ColorPicker(value="#2C3E50", label="Background Color (if no images)") # --- Dedicated Accordion for Spectrogram Bar Style --- with gr.Accordion("Spectrogram Bar Style", open=True): n_bands_slider = gr.Slider(minimum=8, maximum=256, value=64, step=1, label="Number of Spectrogram Bars") bar_spacing_slider = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Bar/Block Spacing (px)") # --- Replaced Checkbox with Radio for mirror modes --- mirror_mode_radio = gr.Radio( choices=["Off", "Horizontal (Top/Bottom)", "Vertical (Left/Right)"], value="Off", label="Symmetry / Mirror Mode" ) with gr.Row(): bar_style_radio = gr.Radio( choices=["Solid Bars", "Stacked Blocks"], value="Solid Bars", label="Bar Style" ) num_blocks_slider = gr.Slider( minimum=5, maximum=50, value=20, step=1, label="Number of Blocks per Bar", visible=False # Initially hidden ) # --- Function to dynamically show/hide the block count slider --- def update_block_slider_visibility(bar_style): return gr.update(visible=(bar_style == "Stacked Blocks")) bar_style_radio.change( fn=update_block_slider_visibility, inputs=bar_style_radio, outputs=num_blocks_slider ) with gr.Accordion("Text Overlay Options", open=True): gr.Markdown( "**Note:** The title overlay feature automatically detects if a file has an embedded CUE sheet. If not, the filename will be used as the title." ) gr.Markdown("---") # --- Checkbox for number formatting --- format_double_digits_checkbox = gr.Checkbox(label="Format track numbers as double digits (e.g., 01, 05-09)", value=True) gr.Markdown("If the CUE sheet or filenames contain non-English characters, please select a compatible font.") # Define a priority list for default fonts, starting with common Japanese ones. # This list can include multiple names for the same font to improve matching. preferred_fonts = [ "Yu Gothic", "游ゴシック", "MS Gothic", "MS ゴシック", "Meiryo", "メイリオ", "Hiragino Kaku Gothic ProN", # Common on macOS "Microsoft JhengHei", # Fallback to Traditional Chinese "Arial" # Generic fallback ] default_font = None # Find the first available font from the preferred list for font in preferred_fonts: for candidate in FONT_DISPLAY_NAMES: if candidate.startswith(font) or font in candidate: default_font = candidate break if default_font: break # If none of the preferred fonts are found, use the first available font as a last resort if not default_font and FONT_DISPLAY_NAMES: default_font = FONT_DISPLAY_NAMES[0] font_name_dd = gr.Dropdown(choices=FONT_DISPLAY_NAMES, value=default_font, label="Font Family") with gr.Row(): font_size_slider = gr.Slider(minimum=12, maximum=256, value=80, step=1, label="Font Size") font_color_picker = gr.ColorPicker(value="#FFFFFF", label="Font Color") with gr.Row(): font_bg_color_picker = gr.ColorPicker(value="#000000", label="Text BG Color") font_bg_alpha_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="Text BG Opacity") gr.Markdown("Text Position") with gr.Row(): pos_h_radio = gr.Radio(["left", "center", "right"], value="center", label="Horizontal Align") pos_v_radio = gr.Radio(["top", "center", "bottom"], value="bottom", label="Vertical Align") submit_btn = gr.Button("Generate Video", variant="primary") with gr.Column(scale=2): video_output = gr.Video(label="Generated Video") # --- Define the full list of outputs for the update functions --- group_update_outputs = [visible_groups_state, add_group_btn, remove_group_btn] + group_accordions # Connect the "Add Group" button to its update function add_group_btn.click( fn=add_group, inputs=visible_groups_state, outputs=group_update_outputs ) remove_group_btn.click( fn=remove_group, inputs=visible_groups_state, outputs=group_update_outputs ) # --- Define the master list of all inputs for the main button --- all_inputs = [audio_inputs] + group_track_inputs + group_image_inputs + [ fallback_image_input, format_double_digits_checkbox, width_input, height_input, fg_color, bg_color, # --- Add spectrogram style inputs in correct order --- n_bands_slider, bar_spacing_slider, mirror_mode_radio, bar_style_radio, num_blocks_slider, # --- Text and font inputs --- font_name_dd, font_size_slider, font_color_picker, font_bg_color_picker, font_bg_alpha_slider, pos_h_radio, pos_v_radio ] submit_btn.click( fn=process_audio_to_video, inputs=all_inputs, outputs=video_output, show_progress="full" ) if __name__ == "__main__": iface.launch(inbrowser=True)