File size: 45,554 Bytes
dbee618
 
 
 
 
 
 
 
2c95cb8
dbee618
2c95cb8
c6d7d8f
dbee618
7248b37
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d7d8f
dbee618
 
 
 
 
 
 
c6d7d8f
 
 
 
dbee618
 
 
 
 
 
 
 
c6d7d8f
dbee618
 
 
 
 
 
 
c6d7d8f
 
 
 
 
 
dbee618
 
 
 
 
 
c6d7d8f
dbee618
 
 
c6d7d8f
dbee618
 
c6d7d8f
 
 
 
 
 
 
 
dbee618
c6d7d8f
 
 
dbee618
c6d7d8f
 
 
 
 
 
 
 
 
 
dbee618
c6d7d8f
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d7d8f
dbee618
 
 
 
c6d7d8f
dbee618
 
 
c6d7d8f
dbee618
 
 
 
 
c6d7d8f
dbee618
 
 
 
 
 
 
 
7248b37
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7248b37
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c95cb8
 
 
 
 
 
dbee618
 
c6d7d8f
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbee618
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7b514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d7d8f
2c95cb8
 
 
 
dbee618
2c95cb8
c6d7d8f
dbee618
 
 
2c95cb8
dbee618
 
7248b37
 
dbee618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d7d8f
dbee618
 
 
 
 
 
2c95cb8
 
dbee618
c6d7d8f
 
 
2c95cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7248b37
 
2c95cb8
7248b37
 
 
 
2c95cb8
 
 
7248b37
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
2c95cb8
c6d7d8f
2c95cb8
 
 
 
 
 
 
c6d7d8f
2c95cb8
c6d7d8f
2c95cb8
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c95cb8
c6d7d8f
 
 
2c95cb8
c6d7d8f
 
 
 
 
 
2c95cb8
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
2c95cb8
c6d7d8f
 
 
 
2c95cb8
c6d7d8f
 
 
2c95cb8
7248b37
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7b514
dbee618
2c95cb8
 
 
 
 
4a7b514
dbee618
 
4a7b514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7248b37
dbee618
7248b37
 
 
 
 
 
 
 
 
 
4a7b514
0c9293b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7b514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c95cb8
4a7b514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbee618
 
 
2c95cb8
c6d7d8f
7248b37
 
 
 
c6d7d8f
2c95cb8
c6d7d8f
dbee618
c6d7d8f
2c95cb8
dbee618
7248b37
 
 
 
 
dbee618
 
 
 
 
 
 
7248b37
dbee618
 
 
 
 
7248b37
dbee618
7248b37
 
 
 
c6d7d8f
dbee618
2c95cb8
dbee618
 
2c95cb8
 
 
c6d7d8f
 
dbee618
 
 
 
 
 
 
 
 
2c95cb8
 
 
 
dbee618
 
 
 
 
 
2c95cb8
 
c6d7d8f
2c95cb8
 
 
dbee618
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7b514
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7b514
 
 
7248b37
 
 
4a7b514
7248b37
4a7b514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbee618
 
 
2c95cb8
dbee618
7248b37
2c95cb8
 
 
c6d7d8f
2c95cb8
 
 
 
 
4a7b514
2c95cb8
 
 
 
 
 
 
4a7b514
 
 
 
 
2c95cb8
 
 
 
 
 
dbee618
c6d7d8f
dbee618
7248b37
dbee618
c6d7d8f
dbee618
 
 
c6d7d8f
dbee618
 
 
 
 
 
 
 
 
c6d7d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7b514
c6d7d8f
 
 
 
 
 
4a7b514
 
 
 
c6d7d8f
 
 
 
 
dbee618
 
c6d7d8f
 
 
dbee618
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
import gradio as gr
import librosa
import numpy as np
import re
import os
import time
import struct
import subprocess
import soundfile as sf
import matplotlib.font_manager as fm
from PIL import ImageFont
from typing import Tuple, List, Dict, Set
from mutagen.flac import FLAC
from moviepy import CompositeVideoClip, TextClip, VideoClip, AudioFileClip, ImageClip

# --- Font Scanning and Management ---
def get_font_display_name(font_path: str) -> Tuple[str, str]:
    """
    A robust TTF/TTC parser based on the user's final design.
    It reads the 'name' table to find the localized "Full Font Name" (nameID=4).
    Returns a tuple of (display_name, language_tag {'zh'/'ja'/'ko'/'en'/'other'}).
    """
    def decode_name_string(name_bytes: bytes, platform_id: int, encoding_id: int) -> str:
        """Decodes the name string based on platform and encoding IDs."""
        try:
            if platform_id == 3 and encoding_id in [1, 10]: # Windows, Unicode
                return name_bytes.decode('utf_16_be').strip('\x00')
            elif platform_id == 1 and encoding_id == 0: # Macintosh, Roman
                return name_bytes.decode('mac_roman').strip('\x00')
            elif platform_id == 0: # Unicode
                return name_bytes.decode('utf_16_be').strip('\x00')
            else: # Fallback
                return name_bytes.decode('utf_8', errors='ignore').strip('\x00')
        except Exception:
            return None

    try:
        with open(font_path, 'rb') as f: data = f.read()
        def read_ushort(offset):
            return struct.unpack('>H', data[offset:offset+2])[0]
        def read_ulong(offset):
            return struct.unpack('>I', data[offset:offset+4])[0]
        font_offsets = [0]
        # Check for TTC (TrueType Collection) header
        if data[:4] == b'ttcf':
            num_fonts = read_ulong(8)
            font_offsets = [read_ulong(12 + i * 4) for i in range(num_fonts)]
        
        # For simplicity, we only parse the first font in a TTC
        font_offset = font_offsets[0]

        num_tables = read_ushort(font_offset + 4)
        name_table_offset = -1
        # Locate the 'name' table
        for i in range(num_tables):
            entry_offset = font_offset + 12 + i * 16
            tag = data[entry_offset:entry_offset+4]
            if tag == b'name':
                name_table_offset = read_ulong(entry_offset + 8)
                break

        if name_table_offset == -1:
            return None, None

        count, string_offset = read_ushort(name_table_offset + 2), read_ushort(name_table_offset + 4)
        name_candidates = {}
        # Iterate through all name records
        for i in range(count):
            rec_offset = name_table_offset + 6 + i * 12
            platform_id, encoding_id, language_id, name_id, length, offset = struct.unpack('>HHHHHH', data[rec_offset:rec_offset+12])
            
            if name_id == 4:  # We only care about the "Full Font Name"
                string_pos = name_table_offset + string_offset + offset
                value = decode_name_string(data[string_pos : string_pos + length], platform_id, encoding_id)

                if value:
                    # Store candidates based on language ID
                    if language_id in [1028, 2052, 3076, 4100, 5124]:
                        name_candidates["zh"] = value
                    elif language_id == 1041:
                        name_candidates["ja"] = value
                    elif language_id == 1042:
                        name_candidates["ko"] = value
                    elif language_id in [1033, 0]:
                        name_candidates["en"] = value
                    else:
                        if "other" not in name_candidates:
                            name_candidates["other"] = value
                            
        # Return the best candidate based on language priority
        if name_candidates.get("zh"):
            return name_candidates.get("zh"), "zh"
        if name_candidates.get("ja"):
            return name_candidates.get("ja"), "ja"
        if name_candidates.get("ko"):
            return name_candidates.get("ko"), "ko"
        if name_candidates.get("other"):
            return name_candidates.get("other"), "other"
        if name_candidates.get("en"):
            return name_candidates.get("en"), "en"
        return None, None

    except Exception:
        return None, None

def get_font_data() -> Tuple[Dict[str, str], List[str]]:
    """
    Scans system fonts, parses their display names, and returns a sorted list
    with a corresponding name-to-path map.
    """
    font_map = {}
    found_names = [] # Stores (display_name, is_fallback, lang_tag)
    
    # Scan for both .ttf and .ttc files
    ttf_files = fm.findSystemFonts(fontpaths=None, fontext='ttf')
    ttc_files = fm.findSystemFonts(fontpaths=None, fontext='ttc')
    all_font_files = list(set(ttf_files + ttc_files))
    
    for path in all_font_files:
        display_name, lang_tag = get_font_display_name(path)
        is_fallback = display_name is None

        if is_fallback:
            # Create a fallback name from the filename
            display_name = os.path.splitext(os.path.basename(path))[0].replace('-', ' ').replace('_', ' ').title()
            lang_tag = 'fallback'

        if display_name and display_name not in font_map:
            font_map[display_name] = path
            found_names.append((display_name, is_fallback, lang_tag))

    # Define sort priority for languages
    sort_order = {'zh': 0, 'ja': 1, 'ko': 2, 'en': 3, 'other': 4, 'fallback': 5}
    
    # Sort by priority, then alphabetically
    found_names.sort(key=lambda x: (sort_order.get(x[2], 99), x[0]))

    sorted_display_names = [name for name, _, _ in found_names]
    return font_map, sorted_display_names

print("Scanning system fonts and parsing names...")
SYSTEM_FONTS_MAP, FONT_DISPLAY_NAMES = get_font_data()
print(f"Scan complete. Found {len(FONT_DISPLAY_NAMES)} available fonts.")


# --- CUE Sheet Parsing Logic ---
def cue_time_to_seconds(time_str: str) -> float:
    try:
        minutes, seconds, frames = map(int, time_str.split(':'))
        return minutes * 60 + seconds + frames / 75.0
    except ValueError:
        return 0.0

def parse_cue_sheet_manually(cue_data: str) -> List[Dict[str, any]]:
    tracks = []
    current_track_info = None
    for line in cue_data.splitlines():
        line = line.strip()
        if line.upper().startswith('TRACK'):
            if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info:
                tracks.append(current_track_info)
            current_track_info = {}
            continue
        if current_track_info is not None:
            title_match = re.search(r'TITLE\s+"(.*?)"', line, re.IGNORECASE)
            if title_match:
                current_track_info['title'] = title_match.group(1)
                continue
            index_match = re.search(r'INDEX\s+01\s+(\d{2}:\d{2}:\d{2})', line, re.IGNORECASE)
            if index_match:
                current_track_info['start_time'] = cue_time_to_seconds(index_match.group(1))
                continue
    if current_track_info and 'title' in current_track_info and 'start_time' in current_track_info:
        tracks.append(current_track_info)
    return tracks


# --- FFmpeg Framerate Conversion ---
def increase_video_framerate(input_path: str, output_path: str, target_fps: int = 24):
    """
    Uses FFmpeg to increase the video's framerate without re-encoding.
    This is extremely fast as it only copies streams and changes metadata.
    
    Args:
        input_path (str): Path to the low-framerate video file.
        output_path (str): Path for the final, high-framerate video file.
        target_fps (int): The desired output framerate.
    """
    print(f"Increasing framerate of '{input_path}' to {target_fps} FPS...")
    
    # Construct the FFmpeg command based on the user's specification
    command = [
        'ffmpeg',
        '-y',  # Overwrite output file if exists
        '-i', input_path,
        '-map', '0',                # Map all streams (video, audio, subtitles)
        '-vf', f'fps={target_fps}', # Use fps filter to convert framerate to 24
        '-c:v', 'libx264',          # Re-encode video with H.264 codec
        '-preset', 'fast',          # Encoding speed/quality tradeoff
        '-crf', '18',               # Quality (lower is better)
        '-c:a', 'copy',             # Copy audio without re-encoding
        output_path
    ]

    try:
        # Execute the command
        # Using capture_output to hide ffmpeg logs from the main console unless an error occurs
        result = subprocess.run(command, check=True, capture_output=True, text=True)
        print("Framerate increase successful.")
    except FileNotFoundError:
        # This error occurs if FFmpeg is not installed or not in the system's PATH
        raise gr.Error("FFmpeg not found. Please ensure FFmpeg is installed and accessible in your system's PATH.")
    except subprocess.CalledProcessError as e:
        # This error occurs if FFmpeg returns a non-zero exit code
        print("FFmpeg error output:\n", e.stderr)
        raise gr.Error(f"FFmpeg failed to increase the framerate. See console for details. Error: {e.stderr}")


# --- HELPER FUNCTION for parsing track ranges ---
def parse_track_ranges(range_str: str) -> Set[int]:
    """Parses a string like '1-4, 7, 10-13' into a set of integers."""
    if not range_str:
        return set()
    
    indices = set()
    parts = range_str.split(',')
    for part in parts:
        part = part.strip()
        if not part:
            continue
        if '-' in part:
            try:
                start, end = map(int, part.split('-'))
                indices.update(range(start, end + 1))
            except ValueError:
                print(f"Warning: Could not parse range '{part}'. Skipping.")
        else:
            try:
                indices.add(int(part))
            except ValueError:
                print(f"Warning: Could not parse track number '{part}'. Skipping.")
    return indices


# --- Main Processing Function ---
def process_audio_to_video(*args, progress=gr.Progress(track_tqdm=True)):
    # --- Correctly unpack all arguments from *args using slicing ---
    MAX_GROUPS = 10  # This MUST match the UI definition

    # Define the structure of the *args tuple based on the `all_inputs` list
    audio_files = args[0]
    
    # Slice the args tuple to get the continuous blocks of inputs
    all_track_strs = args[1 : 1 + MAX_GROUPS]
    all_image_lists = args[1 + MAX_GROUPS : 1 + MAX_GROUPS * 2]
    
    # Group inputs are packed in pairs (track_str, image_list)
    group_definitions = []
    for i in range(MAX_GROUPS):
        group_definitions.append({
            "tracks_str": all_track_strs[i],
            "images": all_image_lists[i]
        })

    # Unpack the remaining arguments with correct indexing
    arg_offset = 1 + MAX_GROUPS * 2
    fallback_images = args[arg_offset]
    format_double_digits = args[arg_offset + 1]
    video_width = args[arg_offset + 2]
    video_height = args[arg_offset + 3]
    spec_fg_color = args[arg_offset + 4]
    spec_bg_color = args[arg_offset + 5]
    
    # --- NEW: Unpack spectrogram style arguments ---
    n_bands = int(args[arg_offset + 6])
    bar_spacing = int(args[arg_offset + 7])
    mirror_mode = args[arg_offset + 8] # This is now a string
    bar_style = args[arg_offset + 9]
    num_blocks = int(args[arg_offset + 10])
    
    # --- Unpack font and text arguments (indices are shifted) ---
    font_name = args[arg_offset + 11]
    font_size = args[arg_offset + 12]
    font_color = args[arg_offset + 13]
    font_bg_color = args[arg_offset + 14]
    font_bg_alpha = args[arg_offset + 15]
    pos_h = args[arg_offset + 16]
    pos_v = args[arg_offset + 17]


    if not audio_files:
        raise gr.Error("Please upload at least one audio file.")
    if not font_name:
        raise gr.Error("Please select a font from the list.")
    
    progress(0, desc="Initializing...")
    
    # Define paths for temporary and final files
    timestamp = int(time.time())
    temp_fps1_path = f"temp_{timestamp}_fps1.mp4"
    temp_audio_path = f"temp_combined_audio_{timestamp}.wav"
    final_output_path = f"final_video_{timestamp}_fps24.mp4"

    WIDTH, HEIGHT = int(video_width), int(video_height)
    RENDER_FPS = 1 # Render at 1 FPS
    PLAYBACK_FPS = 24 # Final playback framerate
    
    # --- A robust color parser for hex and rgb() strings ---
    def parse_color_to_rgb(color_str: str) -> Tuple[int, int, int]:
        """
        Parses a color string which can be in hex format (#RRGGBB) or
        rgb format (e.g., "rgb(255, 128, 0)").
        Returns a tuple of (R, G, B).
        """
        color_str = color_str.strip()
        if color_str.startswith('#'):
            # Handle hex format
            hex_val = color_str.lstrip('#')
            if len(hex_val) == 3: # Handle shorthand hex like #FFF
                hex_val = "".join([c*2 for c in hex_val])
            return tuple(int(hex_val[i:i+2], 16) for i in (0, 2, 4))
        elif color_str.startswith('rgb'):
            # Handle rgb format
            try:
                numbers = re.findall(r'\d+', color_str)
                return tuple(int(n) for n in numbers[:3])
            except (ValueError, IndexError):
                raise ValueError(f"Could not parse rgb color string: {color_str}")
        else:
            raise ValueError(f"Unknown color format: {color_str}")
        
    # Use the new robust parser for all color inputs
    fg_rgb, bg_rgb = parse_color_to_rgb(spec_fg_color), parse_color_to_rgb(spec_bg_color)
    grid_rgb = tuple(min(c + 40, 255) for c in bg_rgb)
    
    # Wrap the entire process in a try...finally block to ensure cleanup
    try:
        # --- Define total steps for the progress bar ---
        TOTAL_STEPS = 5
        
        # --- Stage 1: Audio Processing & Master Track List Creation ---
        master_track_list, y_accumulator, current_sr = [], [], None
        total_duration, global_track_counter = 0.0, 0
        
        # --- Use `progress.tqdm` to create a progress bar for this loop ---
        for file_idx, audio_path in enumerate(progress.tqdm(audio_files, desc=f"Stage 1/{TOTAL_STEPS}: Analyzing Audio Files")):
            # --- Load audio as stereo (or its original channel count) ---
            y, sr = librosa.load(audio_path, sr=None, mono=False)
            # If loaded audio is mono (1D array), convert it to a 2D stereo array
            # by duplicating the channel. This ensures all arrays can be concatenated.
            if y.ndim == 1:
                print(f"  - Converting mono file to stereo: {os.path.basename(audio_path)}")
                y = np.stack([y, y])
            
            if current_sr is None:
                current_sr = sr
            if current_sr != sr:
                print(f"Warning: Sample rate mismatch for {os.path.basename(audio_path)}. Expected {current_sr}Hz, found {sr}Hz.")
                print(f"Resampling from {sr}Hz to {current_sr}Hz...")
                y = librosa.resample(y, orig_sr=sr, target_sr=current_sr)
            
            y_accumulator.append(y)
            # Use the first channel (y[0]) for duration calculation, which is standard practice
            file_duration = librosa.get_duration(y=y[0], sr=current_sr)
            
            # First, try to parse the CUE sheet from the audio file.
            cue_tracks = []
            if audio_path.lower().endswith('.flac'):
                try:
                    audio_meta = FLAC(audio_path)
                    if 'cuesheet' in audio_meta.tags:
                        cue_tracks = parse_cue_sheet_manually(audio_meta.tags['cuesheet'][0])
                        
                        print(f"Successfully parsed {len(cue_tracks)} tracks from CUE sheet.")
                except Exception as e:
                    print(f"Warning: Could not parse CUE sheet for {os.path.basename(audio_path)}: {e}")

            if cue_tracks:
                for track_idx, track in enumerate(cue_tracks):
                    global_track_counter += 1
                    start_time = track.get('start_time', 0)
                    end_time = cue_tracks[track_idx+1].get('start_time', file_duration) if track_idx + 1 < len(cue_tracks) else file_duration
                    master_track_list.append({"global_index": global_track_counter, "title": track.get('title', 'Unknown'), "start_time": total_duration + start_time, "end_time": total_duration + end_time})
            else:
                global_track_counter += 1
                master_track_list.append({"global_index": global_track_counter, "title": os.path.splitext(os.path.basename(audio_path))[0], "start_time": total_duration, "end_time": total_duration + file_duration})
            
            total_duration += file_duration
            
        # --- Concatenate along the time axis (axis=1) for stereo arrays ---
        y_combined = np.concatenate(y_accumulator, axis=1)
        duration = total_duration
        
        # --- Transpose the array for soundfile to write stereo correctly ---
        sf.write(temp_audio_path, y_combined.T, current_sr)
        print(f"Combined all audio files into one. Total duration: {duration:.2f}s")
        
        # --- Update progress to the next stage, use fractional progress (current/total) ---
        progress(1 / TOTAL_STEPS, desc=f"Stage 2/{TOTAL_STEPS}: Mapping Images to Tracks")
        
        # --- Stage 2: Map Tracks to Image Groups ---
        parsed_groups = [parse_track_ranges(g['tracks_str']) for g in group_definitions]
        track_to_images_map = {}
        for track_info in master_track_list:
            track_idx = track_info['global_index']
            assigned = False
            for i, group_indices in enumerate(parsed_groups):
                if track_idx in group_indices:
                    track_to_images_map[track_idx] = group_definitions[i]['images']
                    assigned = True
                    break
            if not assigned:
                track_to_images_map[track_idx] = fallback_images
        
        # --- Stage 3: Generate ImageClips based on contiguous blocks ---
        image_clips = []
        if any(track_to_images_map.values()):
            current_track_cursor = 0
            while current_track_cursor < len(master_track_list):
                start_track_info = master_track_list[current_track_cursor]
                image_set_for_block = track_to_images_map.get(start_track_info['global_index'])

                # Find the end of the contiguous block of tracks that use the same image set
                end_track_cursor = current_track_cursor
                while (end_track_cursor + 1 < len(master_track_list) and
                       track_to_images_map.get(master_track_list[end_track_cursor + 1]['global_index']) == image_set_for_block):
                    end_track_cursor += 1

                end_track_info = master_track_list[end_track_cursor]
                
                block_start_time = start_track_info['start_time']
                block_end_time = end_track_info['end_time']
                block_duration = block_end_time - block_start_time

                if image_set_for_block and block_duration > 0:
                    print(f"Creating image block for tracks {start_track_info['global_index']}-{end_track_info['global_index']} (Time: {block_start_time:.2f}s - {block_end_time:.2f}s)")
                    time_per_image = block_duration / len(image_set_for_block)
                    for i, img_path in enumerate(image_set_for_block):
                        def create_image_layer(path, start, dur):
                            try:
                                img = ImageClip(path)
                                scale = min(WIDTH/img.w, HEIGHT/img.h)
                                resized_img = img.resized(scale)
                                return CompositeVideoClip([resized_img.with_position("center")], size=(WIDTH, HEIGHT)).with_duration(dur).with_start(start)
                            except Exception as e:
                                print(f"Warning: Failed to process image '{path}'. Skipping. Error: {e}")
                                return None

                        clip = create_image_layer(img_path, block_start_time + i * time_per_image, time_per_image)
                        if clip:
                            image_clips.append(clip)

                current_track_cursor = end_track_cursor + 1

        progress(2 / TOTAL_STEPS, desc=f"Stage 3/{TOTAL_STEPS}: Generating Text & Spectrogram")

        # --- Stage 4: Generate Text and Spectrogram ---
        # --- Text Overlay Logic using the aggregated track info
        text_clips = [] # Text clips are now simpler as they don't depend on complex file logic anymore
        
        font_path = SYSTEM_FONTS_MAP.get(font_name)
        if not font_path:
            raise gr.Error(f"Font path for '{font_name}' not found!")
        
        # Use the robust parser for text colors as well
        font_bg_rgb = parse_color_to_rgb(font_bg_color)

        position = (pos_h.lower(), pos_v.lower())
        
        print(f"Using font: {font_name}, Size: {font_size}, Position: {position}")

        # Create the RGBA tuple for the background color.
        # The alpha value is converted from a 0.0-1.0 float to a 0-255 integer.
        bg_color_tuple = (font_bg_rgb[0], font_bg_rgb[1], font_bg_rgb[2], int(font_bg_alpha * 255))
        
        # 1. Define a maximum width for the caption. 90% of the video width is a good choice.
        caption_width = int(WIDTH * 0.9)
            
        # --- Get font metrics to calculate dynamic padding ---
        try:
            # Load the font with Pillow to access its metrics
            pil_font = ImageFont.truetype(font_path, size=font_size)
            _, descent = pil_font.getmetrics()
            # Calculate a bottom margin to compensate for the font's descent.
            # A small constant is added as a safety buffer.
            # This prevents clipping on fonts with large descenders (like 'g', 'p').
            bottom_margin = int(descent * 0.5) + 2
            print(f"Font '{font_name}' descent: {descent}. Applying dynamic bottom margin of {bottom_margin}px.")
        except Exception as e:
            # Fallback in case of any font loading error
            print(f"Warning: Could not get font metrics for '{font_name}'. Using fixed margin. Error: {e}")
            bottom_margin = int(WIDTH * 0.01) # A small fixed fallback
            
        for track in master_track_list:
            text_duration = track['end_time'] - track['start_time']
            if text_duration <= 0:
                continue
            
            # Construct display text based on pre-formatted number string
            num_str = f"{track['global_index']:02d}" if format_double_digits else str(track['global_index'])
            display_text = f"{num_str}. {track['title']}"

            
            # 1. Create the TextClip first without positioning to get its size
            txt_clip = TextClip(
                text=display_text.strip(),
                font_size=font_size,
                color=font_color,
                font=font_path,
                bg_color=bg_color_tuple,
                method='caption', # <-- Set method to caption
                size=(caption_width, None), # <-- Provide size for wrapping
                margin=(0, 0, 0, bottom_margin)
            ).with_position(position).with_duration(text_duration).with_start(track['start_time'])

            text_clips.append(txt_clip)

        N_FFT, HOP_LENGTH = 2048, 512
        MIN_DB, MAX_DB = -80.0, 0.0

        # Spectrogram calculation on combined audio
        # --- Create a mono version of audio specifically for the spectrogram ---
        # This resolves the TypeError while keeping the final audio in stereo.
        y_mono_for_spec = librosa.to_mono(y_combined)
        S_mel = librosa.feature.melspectrogram(y=y_mono_for_spec, sr=current_sr, n_fft=N_FFT, hop_length=HOP_LENGTH, n_mels=n_bands, fmax=current_sr/2)
        S_mel_db = librosa.power_to_db(S_mel, ref=np.max)
        
        # --- Pre-calculate drawing parameters for stacked block style ---
        BLOCK_SPACING = 2 # The pixel gap between stacked blocks
        if bar_style == 'Stacked Blocks':
            # Calculate the total vertical space available for the blocks themselves
            # In mirrored mode, this is based on half the screen height
            if mirror_mode == 'Vertical (Left/Right)':
                drawable_size = WIDTH // 2
            elif mirror_mode == 'Horizontal (Top/Bottom)':
                drawable_size = HEIGHT // 2
            else: # Off
                drawable_size = HEIGHT
            total_block_pixel_size = drawable_size - ((num_blocks - 1) * BLOCK_SPACING)
            # Calculate the size of a single block
            single_block_size = total_block_pixel_size / num_blocks

        # Frame generation logic for the spectrogram
        def frame_generator(t):
            # If images are used as background, the spectrogram's own background should be transparent.
            # Otherwise, use the selected background color.
            # Here, we will use a simple opacity setting on the final clip, so we always generate the frame.
            frame_bg = bg_rgb if not image_clips else (0,0,0) # Use black if it will be made transparent later
            frame = np.full((HEIGHT, WIDTH, 3), frame_bg, dtype=np.uint8)

            # Draw the grid lines only if no images are being used.
            if not image_clips:
                for i in range(1, 9):
                    y_pos = int(i * (HEIGHT / 9)); frame[y_pos-1:y_pos, :] = grid_rgb

            # 1. Safety Check: If the spectrogram has no time frames (e.g., from an extremely short audio file),
            #    return a blank frame immediately to prevent an IndexError.
            if S_mel_db.shape[1] == 0:
                return frame

            # 2. Use librosa.time_to_frames to accurately convert the video time `t`
            #    into a spectrogram frame index. This is far more reliable than manual scaling
            #    and solves the problem of missing content on the rightmost side of the video.
            time_idx = librosa.time_to_frames(t, sr=current_sr, hop_length=HOP_LENGTH)
            
            # 3. Boundary Protection: Although time_to_frames is accurate, this extra `min`
            #    call acts as a safeguard to ensure the index never exceeds the array's
            #    maximum valid index, preventing any edge-case errors.
            time_idx = min(time_idx, S_mel_db.shape[1] - 1)
            
            # --- RENDER LOGIC FOR VERTICAL MIRROR ---
            if mirror_mode == 'Vertical (Left/Right)':
                center_x = WIDTH // 2
                max_pixel_length = WIDTH // 2
                bar_height = HEIGHT / n_bands

                for i in range(n_bands):
                    energy_db = S_mel_db[i, time_idx]
                    norm_height = np.clip((energy_db - MIN_DB) / (MAX_DB - MIN_DB), 0, 1)
                    if norm_height == 0:
                        continue

                    # --- Calculate y-coords from bottom-to-top ---
                    # This makes low frequencies appear at the bottom and high frequencies at the top.
                    y_start = int(HEIGHT - (i + 1) * bar_height)
                    y_end = int(HEIGHT - i * bar_height)
                    
                    # Apply spacing to create a gap above the current bar.
                    y_start_with_spacing = y_start + bar_spacing

                    # Ensure the bar still has visible height after spacing
                    if y_start_with_spacing >= y_end:
                        continue

                    if bar_style == 'Stacked Blocks':
                        blocks_to_draw = int(norm_height * num_blocks)
                        if blocks_to_draw == 0:
                            continue

                        for j in range(blocks_to_draw):
                            block_left_x = center_x + (j * (single_block_size + BLOCK_SPACING))
                            block_right_x = block_left_x + single_block_size
                            # Draw right side
                            frame[y_start_with_spacing:y_end, int(block_left_x):int(block_right_x)] = fg_rgb
                            # Draw mirrored left side
                            frame[y_start_with_spacing:y_end, int(center_x - (block_right_x - center_x)):int(center_x - (block_left_x - center_x))] = fg_rgb
                    else: # Solid Bars
                        bar_pixel_length = int(norm_height * max_pixel_length)
                        if bar_pixel_length < 1:
                            continue

                        # Draw right side
                        frame[y_start_with_spacing:y_end, center_x : center_x + bar_pixel_length] = fg_rgb
                        # Draw mirrored left side
                        frame[y_start_with_spacing:y_end, center_x - bar_pixel_length : center_x] = fg_rgb
            
            # --- RENDER LOGIC FOR HORIZONTAL MIRROR AND OFF ---
            else:
                bar_width = WIDTH / n_bands
                is_horizontal_mirror = (mirror_mode == 'Horizontal (Top/Bottom)')
                
                # Determine rendering parameters based on whether the view is mirrored
                if is_horizontal_mirror:
                    center_y = HEIGHT // 2
                    max_pixel_height = HEIGHT // 2
                else: # Off
                    center_y = HEIGHT # The "center" is the bottom of the screen
                    max_pixel_height = HEIGHT

                # Loop through each frequency band to draw its bar/blocks
                for i in range(n_bands):
                    energy_db = S_mel_db[i, time_idx]
                
                    # The denominator should be the range of DB values (MAX_DB - MIN_DB).
                    # Since MAX_DB is 0, this simplifies to -MIN_DB, which is a positive 80.0.
                    # This prevents the division by zero warning.
                    norm_height = np.clip((energy_db - MIN_DB) / (MAX_DB - MIN_DB), 0, 1)
                    
                    if norm_height == 0:
                        continue

                    # Calculate the horizontal position of the current bar
                    x_start = int(i * bar_width)
                    x_end = int((i + 1) * bar_width - bar_spacing)

                    # --- Main rendering logic: switches between styles ---
                    if bar_style == 'Stacked Blocks':
                        # Calculate how many blocks to draw based on energy
                        blocks_to_draw = int(norm_height * num_blocks)
                        if blocks_to_draw == 0:
                            continue
                    
                        # Draw each block from the bottom up
                        for j in range(blocks_to_draw):
                            # Calculate the Y coordinates for this specific block
                            block_bottom_y = center_y - (j * (single_block_size + BLOCK_SPACING))
                            block_top_y = block_bottom_y - single_block_size
                            frame[int(block_top_y):int(block_bottom_y), x_start:x_end] = fg_rgb
                            
                            if is_horizontal_mirror:
                                frame[int(center_y + (center_y - block_bottom_y)):int(center_y + (center_y - block_top_y)), x_start:x_end] = fg_rgb
                    else: # Solid Bars
                        # Calculate the total height of the solid bar
                        bar_pixel_height = int(norm_height * max_pixel_height)
                        
                        if bar_pixel_height < 1:
                            continue

                        frame[center_y - bar_pixel_height : center_y, x_start:x_end] = fg_rgb
                        
                        if is_horizontal_mirror:
                            frame[center_y : center_y + bar_pixel_height, x_start:x_end] = fg_rgb
            return frame
            
        video_clip = VideoClip(frame_function=frame_generator, duration=duration)
        
        # --- Set Spectrogram Opacity ---
        # If image clips were created, make the spectrogram layer 50% transparent.
        if image_clips:
            print("Applying 50% opacity to spectrogram layer.")
            video_clip = video_clip.with_opacity(0.5)
            
        # --- Use fractional progress (current/total) ---
        progress(3 / TOTAL_STEPS, desc=f"Stage 4/{TOTAL_STEPS}: Rendering Base Video")
        
        # --- Composition and Rendering ---
        audio_clip = AudioFileClip(temp_audio_path)
        
        # --- Clip Composition ---
        # The final composition order is important: images at the bottom, then spectrogram, then text.
        # The base layer is now the list of image clips.
        final_layers = image_clips + [video_clip] + text_clips
        final_clip = CompositeVideoClip(final_layers, size=(WIDTH, HEIGHT)).with_audio(audio_clip)
        
        # Step 1: Render the slow, 1 FPS intermediate file
        print(f"Step 1/2: Rendering base video at {RENDER_FPS} FPS...")
        try:
            # Attempt to copy audio stream directly
            print("Attempting to copy audio stream directly...")
            final_clip.write_videofile(
                temp_fps1_path, codec="libx264", audio_codec="copy", fps=RENDER_FPS,
                logger='bar', threads=os.cpu_count(), preset='ultrafast'
            )
            print("Audio stream successfully copied!")
        except Exception:
            # Fallback to AAC encoding if copy fails
            print("Direct audio copy failed, falling back to high-quality AAC encoding...")
            final_clip.write_videofile(
                temp_fps1_path, codec="libx264", audio_codec="aac",
                audio_bitrate="320k", fps=RENDER_FPS,
                logger='bar', threads=os.cpu_count(), preset='ultrafast')
            print("High-quality AAC audio encoding complete.")

        final_clip.close()
        
        # Step 2: Use FFmpeg to quickly increase the framerate to 24 FPS
        print(f"\nStep 2/2: Remuxing video to {PLAYBACK_FPS} FPS...")

        # --- Use fractional progress (current/total) ---
        progress(4 / TOTAL_STEPS, desc=f"Stage 5/{TOTAL_STEPS}: Finalizing Video")
        
        # --- Finalizing ---
        increase_video_framerate(temp_fps1_path, final_output_path, target_fps=PLAYBACK_FPS)
        
        return final_output_path
        
    except Exception as e:
        # Re-raise the exception to be caught and displayed by Gradio
        raise e
    finally:
        # Step 3: Clean up the temporary file regardless of success or failure
        for f in [temp_fps1_path, temp_audio_path]:
            if os.path.exists(f):
                print(f"Cleaning up temporary file: {f}")
                os.remove(f)

# --- Gradio UI ---
with gr.Blocks(title="Spectrogram Video Generator") as iface:
    gr.Markdown("# Spectrogram Video Generator")
    with gr.Row():
        with gr.Column(scale=1):
            # --- Changed to gr.Files for multi-upload ---
            audio_inputs = gr.Files(
                label="Upload Audio File(s)",
                file_count="multiple",
                file_types=["audio"]
            )
            
            # --- Grouped Image Section ---
            with gr.Accordion("Grouped Image Backgrounds (Advanced)", open=False):
                gr.Markdown("Define groups of tracks and assign specific images to them. Tracks are numbered globally starting from 1 across all uploaded files.")
                
                MAX_GROUPS = 10
                group_track_inputs = []
                group_image_inputs = []
                group_accordions = []

                # --- Create a centralized update function ---
                def update_group_visibility(target_count: int):
                    """Updates the visibility of all group accordions and the state of the control buttons."""
                    # Clamp the target count to be within bounds
                    target_count = max(1, min(target_count, MAX_GROUPS))
                    
                    updates = {visible_groups_state: target_count}
                    # Update visibility for each accordion
                    for i in range(MAX_GROUPS):
                        updates[group_accordions[i]] = gr.update(visible=(i < target_count))
                    
                    # Update button states
                    updates[add_group_btn] = gr.update(visible=(target_count < MAX_GROUPS))
                    updates[remove_group_btn] = gr.update(interactive=(target_count > 1))
                    
                    return updates
                
                # --- Create simple wrapper functions for adding and removing ---
                def add_group(current_count: int):
                    return update_group_visibility(current_count + 1)
                
                def remove_group(current_count: int):
                    return update_group_visibility(current_count - 1)

                # Pre-build all group components
                for i in range(MAX_GROUPS):
                    with gr.Accordion(f"Image Group {i+1}", open=False, visible=(i==0)) as acc:
                        track_input = gr.Textbox(label=f"Tracks for Group {i+1} (e.g., '1-4, 7')")
                        image_input = gr.Files(label=f"Images for Group {i+1}", file_count="multiple", file_types=[".png", ".jpg", ".jpeg", ".webp", ".avif"])
                        group_track_inputs.append(track_input)
                        group_image_inputs.append(image_input)
                        group_accordions.append(acc)
                        
                visible_groups_state = gr.State(1)
                # --- Add a remove button and put both in a row ---
                with gr.Row():
                    remove_group_btn = gr.Button("- Remove Last Group", variant="secondary", interactive=False)
                    add_group_btn = gr.Button("+ Add Image Group", variant="secondary")
                
                with gr.Accordion("Fallback / Default Images", open=True):
                    gr.Markdown("These images will be used for any tracks not assigned to a specific group above.")
                    fallback_image_input = gr.Files(label="Fallback Images", file_count="multiple", file_types=[".png", ".jpg", ".jpeg", ".webp", ".avif"])
            
            # --- Renamed for clarity ---
            with gr.Accordion("General Visualizer Options", open=True):
                with gr.Row():
                    width_input = gr.Number(value=1920, label="Video Width (px)", precision=0)
                    height_input = gr.Number(value=1080, label="Video Height (px)", precision=0)
                fg_color = gr.ColorPicker(value="#71808c", label="Spectrogram Bar Color")
                bg_color = gr.ColorPicker(value="#2C3E50", label="Background Color (if no images)")

            # --- Dedicated Accordion for Spectrogram Bar Style ---
            with gr.Accordion("Spectrogram Bar Style", open=True):
                n_bands_slider = gr.Slider(minimum=8, maximum=256, value=64, step=1, label="Number of Spectrogram Bars")
                bar_spacing_slider = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Bar/Block Spacing (px)")
                
                # --- Replaced Checkbox with Radio for mirror modes ---
                mirror_mode_radio = gr.Radio(
                    choices=["Off", "Horizontal (Top/Bottom)", "Vertical (Left/Right)"],
                    value="Off",
                    label="Symmetry / Mirror Mode"
                )
                
                with gr.Row():
                    bar_style_radio = gr.Radio(
                        choices=["Solid Bars", "Stacked Blocks"],
                        value="Solid Bars",
                        label="Bar Style"
                    )
                    num_blocks_slider = gr.Slider(
                        minimum=5, maximum=50, value=20, step=1, 
                        label="Number of Blocks per Bar",
                        visible=False # Initially hidden
                    )
                
                # --- Function to dynamically show/hide the block count slider ---
                def update_block_slider_visibility(bar_style):
                    return gr.update(visible=(bar_style == "Stacked Blocks"))
                
                bar_style_radio.change(
                    fn=update_block_slider_visibility,
                    inputs=bar_style_radio,
                    outputs=num_blocks_slider
                )
            
            with gr.Accordion("Text Overlay Options", open=True):
                gr.Markdown(
                    "**Note:** The title overlay feature automatically detects if a file has an embedded CUE sheet. If not, the filename will be used as the title."
                )
                gr.Markdown("---")
                # --- Checkbox for number formatting ---
                format_double_digits_checkbox = gr.Checkbox(label="Format track numbers as double digits (e.g., 01, 05-09)", value=True)
                gr.Markdown("If the CUE sheet or filenames contain non-English characters, please select a compatible font.")

                # Define a priority list for default fonts, starting with common Japanese ones.
                # This list can include multiple names for the same font to improve matching.
                preferred_fonts = [
                    "Yu Gothic", "游ゴシック",
                    "MS Gothic", "MS ゴシック",
                    "Meiryo", "メイリオ",
                    "Hiragino Kaku Gothic ProN", # Common on macOS
                    "Microsoft JhengHei", # Fallback to Traditional Chinese
                    "Arial" # Generic fallback
                ]
                default_font = None
                # Find the first available font from the preferred list
                for font in preferred_fonts:
                    for candidate in FONT_DISPLAY_NAMES:
                        if candidate.startswith(font) or font in candidate:
                            default_font = candidate
                            break
                    if default_font:
                        break
                    
                # If none of the preferred fonts are found, use the first available font as a last resort
                if not default_font and FONT_DISPLAY_NAMES:
                    default_font = FONT_DISPLAY_NAMES[0]

                font_name_dd = gr.Dropdown(choices=FONT_DISPLAY_NAMES, value=default_font, label="Font Family")

                with gr.Row():
                    font_size_slider = gr.Slider(minimum=12, maximum=256, value=80, step=1, label="Font Size")
                    font_color_picker = gr.ColorPicker(value="#FFFFFF", label="Font Color")

                with gr.Row():
                    font_bg_color_picker = gr.ColorPicker(value="#000000", label="Text BG Color")
                    font_bg_alpha_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="Text BG Opacity")
                    
                gr.Markdown("Text Position")
                with gr.Row():
                    pos_h_radio = gr.Radio(["left", "center", "right"], value="center", label="Horizontal Align")
                    pos_v_radio = gr.Radio(["top", "center", "bottom"], value="bottom", label="Vertical Align")
            
            submit_btn = gr.Button("Generate Video", variant="primary")
            
        with gr.Column(scale=2):
            video_output = gr.Video(label="Generated Video")
       
    # --- Define the full list of outputs for the update functions ---
    group_update_outputs = [visible_groups_state, add_group_btn, remove_group_btn] + group_accordions

    # Connect the "Add Group" button to its update function
    add_group_btn.click(
        fn=add_group,
        inputs=visible_groups_state,
        outputs=group_update_outputs
    )

    remove_group_btn.click(
        fn=remove_group,
        inputs=visible_groups_state,
        outputs=group_update_outputs
    )
    
    # --- Define the master list of all inputs for the main button ---
    all_inputs = [audio_inputs] + group_track_inputs + group_image_inputs + [
        fallback_image_input,
        format_double_digits_checkbox,
        width_input, height_input,
        fg_color, bg_color, 
        # --- Add spectrogram style inputs in correct order ---
        n_bands_slider, bar_spacing_slider, mirror_mode_radio,
        bar_style_radio, num_blocks_slider,
        # --- Text and font inputs ---
        font_name_dd, font_size_slider, font_color_picker,
        font_bg_color_picker, font_bg_alpha_slider,
        pos_h_radio, pos_v_radio
    ]

    submit_btn.click(
        fn=process_audio_to_video,
        inputs=all_inputs,
        outputs=video_output,
        show_progress="full"
    )

if __name__ == "__main__":
    iface.launch(inbrowser=True)