avans06's picture
feat(separation): Integrate BS-RoFormer & Mel-RoFormer models
d050f96
raw
history blame
231 kB
# =================================================================
#
# Merged and Integrated Script for Audio/MIDI Processing and Rendering (Stereo Enhanced)
#
# This script combines two functionalities:
# 1. Transcribing audio to MIDI using two methods:
# a) A general-purpose model (basic-pitch by Spotify).
# b) A model specialized for solo piano (ByteDance).
# - Includes stereo processing by splitting channels, transcribing independently, and merging MIDI.
# 2. Applying advanced transformations and re-rendering MIDI files using:
# a) Standard SoundFonts via FluidSynth (produces stereo audio).
# b) A custom 8-bit style synthesizer for a chiptune sound (updated for stereo output).
#
# The user can upload a Audio (e.g., WAV, MP3), or MIDI file.
# - If an audio file is uploaded, it is first transcribed to MIDI using the selected method.
# - The resulting MIDI (or an uploaded MIDI) can then be processed
# with various effects and rendered into audio.
#
#================================================================
# Original sources:
# https://huggingface.co/spaces/asigalov61/ByteDance-Solo-Piano-Audio-to-MIDI-Transcription
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Renderer
#================================================================
# Packages:
#
# sudo apt install fluidsynth
#
# =================================================================
# Requirements:
#
# pip install gradio torch pytz numpy scipy matplotlib networkx scikit-learn
# pip install piano_transcription_inference huggingface_hub
# pip install basic-pitch pretty_midi librosa soundfile
#
# =================================================================
# Core modules:
#
# git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#
# =================================================================
import io
import os
import hashlib
import time as reqtime
import copy
import random
import shutil
import librosa
import pyloudnorm as pyln
import soundfile as sf
from mutagen.flac import FLAC
import torch
import ffmpeg
import gradio as gr
from dataclasses import dataclass, fields # ADDED for the parameter object
# --- Imports for Vocal Separation ---
import torchaudio
from demucs.apply import apply_model
from demucs.pretrained import get_model
from demucs.audio import convert_audio
from audio_separator.separator import Separator
from src.piano_transcription.utils import initialize_app
from piano_transcription_inference import PianoTranscription, utilities, sample_rate as transcription_sample_rate
# --- Import core transcription and MIDI processing libraries ---
from src import TMIDIX, TPLOTS
from src import MIDI
from src.midi_to_colab_audio import midi_to_colab_audio
# --- Imports for General Purpose Transcription (basic-pitch) ---
import basic_pitch
from basic_pitch.inference import predict
from basic_pitch import ICASSP_2022_MODEL_PATH
# --- Imports for 8-bit Synthesizer & MIDI Merging ---
import pretty_midi
import numpy as np
from scipy import signal
# =================================================================================================
# === Hugging Face SoundFont Downloader ===
# =================================================================================================
from huggingface_hub import hf_hub_download
import glob
# --- Define a constant for the 8-bit synthesizer option ---
SYNTH_8_BIT_LABEL = "None (8-bit Synthesizer)"
# =================================================================================================
# === Central Parameter Object ===
# =================================================================================================
@dataclass
class AppParameters:
"""A dataclass to hold all configurable parameters for the application."""
# This provides type safety and autocomplete, preventing typos from string keys.
# Input files (not part of the settings panel)
input_file: str = None
batch_input_files: list = None
# Global Settings
s8bit_preset_selector: str = "Custom"
separate_vocals: bool = False
separation_model: str = "Demucs (4-stem)"
# --- Advanced Separation and Merging Controls ---
enable_advanced_separation: bool = False # Controls visibility of advanced options
separate_drums: bool = True
separate_bass: bool = True
separate_other: bool = True
transcribe_vocals: bool = False
transcribe_drums: bool = False
transcribe_bass: bool = False
transcribe_other_or_accompaniment: bool = True # Default to transcribe 'other' as it's most common
merge_vocals_to_render: bool = False
merge_drums_to_render: bool = False
merge_bass_to_render: bool = False
merge_other_or_accompaniment: bool = False
enable_stereo_processing: bool = False
transcription_method: str = "General Purpose"
basic_pitch_preset_selector: str = "Default (Balanced)"
# Basic Pitch Settings
onset_threshold: float = 0.5
frame_threshold: float = 0.3
minimum_note_length: int = 128
minimum_frequency: float = 60.0
maximum_frequency: float = 4000.0
infer_onsets: bool = True
melodia_trick: bool = True
multiple_pitch_bends: bool = False
# Render Settings
render_type: str = "Render as-is"
soundfont_bank: str = "None (8-bit Synthesizer)"
render_sample_rate: str = "44100"
render_with_sustains: bool = True
merge_misaligned_notes: int = -1
custom_render_patch: int = -1
render_align: str = "Do not align"
render_transpose_value: int = 0
render_transpose_to_C4: bool = False
render_output_as_solo_piano: bool = False
render_remove_drums: bool = False
# 8-bit Synthesizer Settings
s8bit_waveform_type: str = 'Square'
s8bit_pulse_width: float = 0.5
s8bit_envelope_type: str = 'Plucky (AD Envelope)'
s8bit_decay_time_s: float = 0.1
s8bit_vibrato_rate: float = 5.0
s8bit_vibrato_depth: float = 0.0
s8bit_bass_boost_level: float = 0.0
s8bit_smooth_notes_level: float = 0.0
s8bit_continuous_vibrato_level: float = 0.0
s8bit_noise_level: float = 0.0
s8bit_distortion_level: float = 0.0
s8bit_fm_modulation_depth: float = 0.0
s8bit_fm_modulation_rate: float = 0.0
s8bit_adaptive_decay: bool = False
s8bit_echo_sustain: bool = False
s8bit_echo_rate_hz: float = 5.0
s8bit_echo_decay_factor: float = 0.6
s8bit_echo_trigger_threshold: float = 2.5
# --- Anti-Aliasing & Quality Parameters ---
s8bit_enable_anti_aliasing: bool = True # Main toggle for all new quality features
s8bit_use_additive_synthesis: bool = False # High-quality but CPU-intensive waveform generation
s8bit_edge_smoothing_ms: float = 0.5 # Mild smoothing for standard waveforms (0 to disable)
s8bit_noise_lowpass_hz: float = 9000.0 # Lowpass filter frequency for noise
s8bit_harmonic_lowpass_factor: float = 12.0 # Multiplier for frequency-dependent lowpass filter
s8bit_final_gain: float = 0.8 # Final gain/limiter level to prevent clipping
s8bit_bass_boost_cutoff_hz: float = 200.0 # Parameter for Intelligent Bass Boost
# --- MIDI Pre-processing to Reduce Harshness ---
s8bit_enable_midi_preprocessing: bool = True # Master switch for this feature
s8bit_high_pitch_threshold: int = 84 # Pitch (C6) above which velocity is scaled
s8bit_high_pitch_velocity_scale: float = 0.8 # Velocity multiplier for high notes (e.g., 80%)
# --- Low-pitch management parameters ---
s8bit_low_pitch_threshold: int = 36 # Low pitch threshold (C2)
s8bit_low_pitch_velocity_scale: float = 0.9 # Low pitch velocity scale
s8bit_chord_density_threshold: int = 4 # Min number of notes to be considered a dense chord
s8bit_chord_velocity_threshold: int = 100 # Min average velocity for a chord to be tamed
s8bit_chord_velocity_scale: float = 0.75 # Velocity multiplier for loud, dense chords
# --- Arpeggiator Parameters ---
s8bit_enable_arpeggiator: bool = False # Master switch for the arpeggiator
s8bit_arpeggio_target: str = "Accompaniment Only" # Target selection for the arpeggiator
s8bit_arpeggio_velocity_scale: float = 0.7 # Velocity multiplier for arpeggiated notes (0.0 to 1.0)
s8bit_arpeggio_density: float = 0.5 # Density factor for rhythmic patterns (0.0 to 1.0)
s8bit_arpeggio_rhythm: str = "Classic Upbeat (8th)" # Rhythmic pattern for arpeggiation
s8bit_arpeggio_pattern: str = "Up" # Pattern of the arpeggio (e.g., Up, Down, UpDown)
s8bit_arpeggio_octave_range: int = 1 # How many octaves the pattern spans
s8bit_arpeggio_panning: str = "Stereo" # Panning mode for arpeggiated notes (Stereo, Left, Right, Center)
# --- MIDI Delay/Echo Effect Parameters ---
s8bit_enable_delay: bool = False # Master switch for the delay effect
s8bit_delay_on_melody_only: bool = True # Apply delay only to the lead melody
s8bit_delay_division: str = "Dotted 8th Note"
s8bit_delay_feedback: float = 0.5 # Velocity scale for each subsequent echo (50%)
s8bit_delay_repeats: int = 3 # Number of echoes to generate
# --- NEW: Low-End Management for Delay ---
s8bit_delay_highpass_cutoff_hz: int = 100 # High-pass filter frequency for delay echoes (removes low-end rumble from echoes)
s8bit_delay_bass_pitch_shift: int = 0 # Pitch shift (in semitones) applied to low notes in delay echoes
# --- High-End Management for Delay ---
s8bit_delay_lowpass_cutoff_hz: int = 5000 # Lowpass filter frequency for delay echoes (removes harsh high frequencies from echoes)
s8bit_delay_treble_pitch_shift: int = 0 # Pitch shift (in semitones) applied to high notes in delay echoes
# =================================================================================================
# === Helper Functions ===
# =================================================================================================
def analyze_audio_for_adaptive_params(audio_data: np.ndarray, sample_rate: int):
"""
Analyzes raw audio data to dynamically determine optimal parameters for basic-pitch.
Args:
audio_data: The audio signal as a NumPy array (can be stereo).
sample_rate: The sample rate of the audio.
Returns:
A dictionary of recommended parameters for basic_pitch.
"""
print(" - Running adaptive analysis on audio to determine optimal transcription parameters...")
# Ensure audio is mono for most feature extractions
if audio_data.ndim > 1:
y_mono = librosa.to_mono(audio_data)
else:
y_mono = audio_data
params = {}
# 1. Tempo detection with enhanced stability
try:
tempo_info = librosa.beat.tempo(y=y_mono, sr=sample_rate, aggregate=np.median)
# Ensure BPM is a scalar float
bpm = float(np.median(tempo_info))
if bpm <= 0 or np.isnan(bpm):
raise ValueError("Invalid BPM detected")
# A 64th note is a reasonable shortest note length for most music
# Duration of a beat (quarter note) in seconds = 60 / BPM
# Duration of a 64th note = (60 / BPM) / 16
min_len_s = (60.0 / bpm) / 16.0
# basic-pitch expects milliseconds
params['minimum_note_length'] = max(20, int(min_len_s * 1000))
print(f" - Detected BPM (median): {bpm:.1f} -> minimum_note_length: {params['minimum_note_length']}ms")
except Exception as e:
print(f" - BPM detection failed, using default minimum_note_length. Error: {e}")
# 2. Spectral analysis: centroid + rolloff for richer info
try:
spectral_centroid = librosa.feature.spectral_centroid(y=y_mono, sr=sample_rate)[0]
rolloff = librosa.feature.spectral_rolloff(y=y_mono, sr=sample_rate)[0]
avg_centroid = np.mean(spectral_centroid)
avg_rolloff = np.mean(rolloff)
print(f" - Spectral centroid: {avg_centroid:.1f} Hz, rolloff (85%): {avg_rolloff:.1f} Hz")
# Simple logic: if the 'center of mass' of the spectrum is low, it's bass-heavy.
# If it's high, it contains high-frequency content.
if avg_centroid < 500 and avg_rolloff < 1500:
params['minimum_frequency'] = 30
params['maximum_frequency'] = 1200
elif avg_centroid > 2000 or avg_rolloff > 5000: # Likely bright, high-frequency content (cymbals, flutes)
params['minimum_frequency'] = 100
params['maximum_frequency'] = 8000
else:
params['minimum_frequency'] = 50
params['maximum_frequency'] = 4000
except Exception as e:
print(f" - Spectral analysis failed, using default frequencies. Error: {e}")
# 3. Onset threshold based on percussiveness
try:
y_harmonic, y_percussive = librosa.effects.hpss(y_mono)
percussive_ratio = np.sum(y_percussive**2) / (np.sum(y_harmonic**2) + 1e-10)
# If the percussive energy is high, we need a higher onset threshold to be stricter
params['onset_threshold'] = 0.6 if percussive_ratio > 0.5 else 0.45
print(f" - Percussive ratio: {percussive_ratio:.2f} -> onset_threshold: {params['onset_threshold']}")
except Exception as e:
print(f" - Percussiveness analysis failed, using default onset_threshold. Error: {e}")
# 4. Frame threshold from RMS
try:
rms = librosa.feature.rms(y=y_mono)[0]
# Use the 10th percentile of energy as a proxy for the noise floor
noise_floor_rms = np.percentile(rms, 10)
# Set the frame_threshold to be slightly above this noise floor
# The scaling factor here is empirical and can be tuned
params['frame_threshold'] = max(0.05, min(0.4, noise_floor_rms * 4))
print(f" - Noise floor RMS: {noise_floor_rms:.5f} -> frame_threshold: {params['frame_threshold']:.2f}")
except Exception as e:
print(f" - RMS analysis failed, using default frame_threshold. Error: {e}")
return params
def format_params_for_metadata(params: AppParameters, transcription_log: dict = None) -> str:
"""
Formats the AppParameters object into a human-readable string
suitable for embedding as metadata in an audio file.
"""
import json
# Start with a clean dictionary of the main parameters
params_dict = copy.copy(params.__dict__)
# Create a structured dictionary for the final metadata
structured_metadata = {
"main_settings": {},
"transcription_log": transcription_log if transcription_log else "Not Performed",
"synthesis_settings": {}
}
# Separate parameters into logical groups
transcription_keys = [
'transcription_method', 'basic_pitch_preset_selector', 'onset_threshold',
'frame_threshold', 'minimum_note_length', 'minimum_frequency', 'maximum_frequency',
'infer_onsets', 'melodia_trick', 'multiple_pitch_bends'
]
synthesis_keys = [key for key in params_dict.keys() if key.startswith('s8bit_')]
# Populate the structured dictionary
for key, value in params_dict.items():
if key not in transcription_keys and key not in synthesis_keys:
structured_metadata["main_settings"][key] = value
for key in synthesis_keys:
structured_metadata["synthesis_settings"][key] = params_dict[key]
# If transcription log is empty, we still want to record the UI settings for transcription
if not transcription_log:
structured_metadata["transcription_log"] = {
"ui_settings": {key: params_dict[key] for key in transcription_keys}
}
# Use json.dumps for clean, well-formatted, multi-line string representation
# indent=2 makes it look nice when read back
return json.dumps(params_dict, indent=2)
def preprocess_midi_for_harshness(midi_data: pretty_midi.PrettyMIDI, params: AppParameters):
"""
Analyzes and modifies a PrettyMIDI object in-place to reduce characteristics
that can cause harshness or muddiness in simple synthesizers.
Now includes both high and low pitch attenuation.
Args:
midi_data: The PrettyMIDI object to process.
params: The AppParameters object containing the control thresholds.
"""
print("Running MIDI pre-processing to reduce harshness and muddiness...")
high_notes_tamed = 0
low_notes_tamed = 0
chords_tamed = 0
# Rule 1 & 2: High and Low Pitch Attenuation
for instrument in midi_data.instruments:
for note in instrument.notes:
# Tame very high notes to reduce harshness/aliasing
if note.pitch > params.s8bit_high_pitch_threshold:
note.velocity = int(note.velocity * params.s8bit_high_pitch_velocity_scale)
if note.velocity < 1: note.velocity = 1
high_notes_tamed += 1
# Tame very low notes to reduce muddiness/rumble
if note.pitch < params.s8bit_low_pitch_threshold:
note.velocity = int(note.velocity * params.s8bit_low_pitch_velocity_scale)
if note.velocity < 1: note.velocity = 1
low_notes_tamed += 1
if high_notes_tamed > 0:
print(f" - Tamed {high_notes_tamed} individual high-pitched notes.")
if low_notes_tamed > 0:
print(f" - Tamed {low_notes_tamed} individual low-pitched notes.")
# Rule 3: Chord Compression
# This is a simplified approach: group notes by near-simultaneous start times
all_notes = sorted([note for instrument in midi_data.instruments for note in instrument.notes], key=lambda x: x.start)
time_window = 0.02 # 20ms window to group notes into a chord
i = 0
while i < len(all_notes):
current_chord = [all_notes[i]]
# Find other notes within the time window
j = i + 1
while j < len(all_notes) and (all_notes[j].start - all_notes[i].start) < time_window:
current_chord.append(all_notes[j])
j += 1
# Analyze and potentially tame the chord
if len(current_chord) >= params.s8bit_chord_density_threshold:
avg_velocity = sum(n.velocity for n in current_chord) / len(current_chord)
if avg_velocity > params.s8bit_chord_velocity_threshold:
chords_tamed += 1
for note in current_chord:
note.velocity = int(note.velocity * params.s8bit_chord_velocity_scale)
if note.velocity < 1: note.velocity = 1
# Move index past the current chord
i = j
if chords_tamed > 0:
print(f" - Tamed {chords_tamed} loud, dense chords.")
return midi_data # Return the modified object
def arpeggiate_midi(midi_data: pretty_midi.PrettyMIDI, params: AppParameters):
"""
Applies a tempo-synced, rhythmic arpeggiator effect. It can generate
various rhythmic patterns (not just continuous notes) to create a more
musical and less "stiff" accompaniment.
Improved rhythmic arpeggiator with dynamic density, stereo layer splitting,
micro-randomization, and cross-beat continuity.
Applies a highly configurable arpeggiator with selectable targets:
- Accompaniment Only: The classic approach, arpeggiates harmony.
- Melody Only: A modern approach, adds flair to the lead melody.
- Full Mix: Applies the effect to all notes.
Args:
midi_data: The original PrettyMIDI object.
params: AppParameters containing arpeggiator settings.
Returns:
A new PrettyMIDI object with arpeggiated chords.
"""
print(f"Applying arpeggiator with target: {params.s8bit_arpeggio_target}...")
processed_midi = copy.deepcopy(midi_data)
# --- Step 1: Global analysis to identify lead vs. harmony notes ---
all_notes = []
# We need to keep track of which instrument each note belongs to
for i, instrument in enumerate(processed_midi.instruments):
if not instrument.is_drum:
for note in instrument.notes:
# Use a simple object or tuple to store note and its origin
all_notes.append({'note': note, 'instrument_idx': i})
if not all_notes:
return processed_midi
all_notes.sort(key=lambda x: x['note'].start)
# --- Lead / Harmony separation ---
lead_note_objects = set()
harmony_note_objects = set()
note_idx = 0
while note_idx < len(all_notes):
current_slice_start = all_notes[note_idx]['note'].start
notes_in_slice = [item for item in all_notes[note_idx:] if (item['note'].start - current_slice_start) < 0.02]
if not notes_in_slice:
note_idx += 1
continue
notes_in_slice.sort(key=lambda x: x['note'].pitch, reverse=True)
lead_note_objects.add(notes_in_slice[0]['note'])
for item in notes_in_slice[1:]:
harmony_note_objects.add(item['note'])
note_idx += len(notes_in_slice)
# --- Step 2: Determine which set of notes to process based on the target ---
notes_to_arpeggiate = set()
notes_to_keep_original = set()
if params.s8bit_arpeggio_target == "Accompaniment Only":
print(" - Arpeggiating harmony notes.")
notes_to_arpeggiate = harmony_note_objects
notes_to_keep_original = lead_note_objects
elif params.s8bit_arpeggio_target == "Melody Only":
print(" - Arpeggiating lead melody notes.")
notes_to_arpeggiate = lead_note_objects
notes_to_keep_original = harmony_note_objects
else: # Full Mix
print(" - Arpeggiating all non-drum notes.")
notes_to_arpeggiate = lead_note_objects.union(harmony_note_objects)
notes_to_keep_original = set()
# --- Step 3: Estimate Tempo and prepare for generation ---
try:
bpm = midi_data.estimate_tempo()
except:
bpm = 120.0
beat_duration_s = 60.0 / bpm
rhythm_patterns = {
"Continuous 16ths": [(0.0, 0.25), (0.25, 0.25), (0.5, 0.25), (0.75, 0.25)],
"Classic Upbeat (8th)": [(0.5, 0.25), (0.75, 0.25)],
"Pulsing 8ths": [(0.0, 0.5), (0.5, 0.5)],
"Pulsing 4ths": [(0.0, 0.5)],
"Galloping": [(0.0, 0.75), (0.75, 0.25)],
"Simple Quarter Notes": [(0.0, 1.0)],
"Triplet 8ths": [(0.0, 1/3), (1/3, 1/3), (2/3, 1/3)],
}
selected_rhythm = rhythm_patterns.get(params.s8bit_arpeggio_rhythm, rhythm_patterns["Classic Upbeat (8th)"])
# --- Step 4: Rebuild instruments with the new logic ---
for instrument in processed_midi.instruments:
if instrument.is_drum:
continue
new_note_list = []
# Add back all notes that are designated to be kept original for this track
inst_notes_to_keep = [n for n in instrument.notes if n in notes_to_keep_original]
new_note_list.extend(inst_notes_to_keep)
# Process only the notes targeted for arpeggiation within this instrument
inst_notes_to_arp = [n for n in instrument.notes if n in notes_to_arpeggiate]
processed_arp_notes = set()
for note1 in inst_notes_to_arp:
if note1 in processed_arp_notes:
continue
# Group notes into chords from the target list.
# For melody, each note is its own "chord".
chord_notes = [note1]
if params.s8bit_arpeggio_target != "Melody Only":
chord_notes.extend([n2 for n2 in inst_notes_to_arp if n2 != note1 and n2 not in processed_arp_notes and abs(n2.start - note1.start) < 0.02])
# --- Arpeggiate the identified group (which could be a single note or a chord) ---
for n in chord_notes:
processed_arp_notes.add(n)
chord_start_time = min(n.start for n in chord_notes)
chord_end_time = max(n.end for n in chord_notes)
avg_velocity = int(np.mean([n.velocity for n in chord_notes]))
# --- Apply an exponential curve to the velocity scale ---
# This makes the slider much more sensitive at lower values,
# allowing for true background-level arpeggios.
scale = params.s8bit_arpeggio_velocity_scale
# We use a power of 2 here, but could be tuned (e.g., 1.5, 2.5, 3.0)
# A higher power makes the attenuation at low scale values even more aggressive.
final_velocity_base = int(avg_velocity * (scale ** 2.5))
if final_velocity_base < 1:
final_velocity_base = 1
# --- Pitch Pattern Generation ---
base_pitches = sorted([n.pitch for n in chord_notes])
# For "Melody Only" mode, auto-generate a simple chord from the single melody note
if params.s8bit_arpeggio_target == "Melody Only" and len(base_pitches) == 1:
# This is a very simple major chord generator, can be expanded later
# Auto-generate a major chord from the single melody note
root = base_pitches[0]
base_pitches = [root, root + 4, root + 7]
pattern = []
for octave in range(params.s8bit_arpeggio_octave_range):
octave_pitches = [p + (12 * octave) for p in base_pitches]
if params.s8bit_arpeggio_pattern == "Up":
pattern.extend(octave_pitches)
elif params.s8bit_arpeggio_pattern == "Down":
pattern.extend(reversed(octave_pitches))
elif params.s8bit_arpeggio_pattern == "UpDown":
pattern.extend(octave_pitches)
if len(octave_pitches) > 2:
pattern.extend(reversed(octave_pitches[1:-1]))
if not pattern:
continue
# --- Rhythmic Note Generation ---
note_base_density = getattr(params, "s8bit_arpeggio_density", 0.6)
chord_duration = chord_end_time - chord_start_time
note_duration_factor = min(1.0, chord_duration / (2 * beat_duration_s)) if beat_duration_s > 0 else 1.0
note_density_factor = note_base_density * note_duration_factor
current_beat = chord_start_time / beat_duration_s if beat_duration_s > 0 else 0
current_time = chord_start_time
pattern_index = 0
while current_time < chord_end_time:
# Lay down the rhythmic pattern for the current beat
current_beat_start_time = np.floor(current_beat) * beat_duration_s
for start_offset, duration_beats in selected_rhythm:
note_start_time = current_beat_start_time + (start_offset * beat_duration_s)
note_duration_s = duration_beats * beat_duration_s * note_density_factor
# Ensure the note does not exceed the chord's total duration
if note_start_time >= chord_end_time:
break
pitch = pattern[pattern_index % len(pattern)]
# Micro-randomization
rand_offset = random.uniform(-0.01, 0.01) # ±10ms
final_velocity = max(1, min(127, final_velocity_base + random.randint(-5, 5)))
new_note = pretty_midi.Note(
velocity=final_velocity,
pitch=pitch,
start=max(0.0, note_start_time + rand_offset),
end=min(chord_end_time, note_start_time + note_duration_s)
)
new_note_list.append(new_note)
pattern_index += 1
current_beat += 1.0
current_time = current_beat * beat_duration_s if beat_duration_s > 0 else float('inf')
# Replace the instrument's original note list with the new, processed one
instrument.notes = new_note_list
print("Targeted arpeggiator finished.")
return processed_midi
def create_delay_effect(midi_data: pretty_midi.PrettyMIDI, params: AppParameters):
"""
Creates a delay/echo effect by duplicating notes with delayed start times
and scaled velocities. Can be configured to apply only to the lead melody.
based on the MIDI's estimated BPM and the user's selected musical division.
"""
print("Applying tempo-synced MIDI delay/echo effect...")
# Work on a deep copy to ensure the original MIDI object is not mutated.
processed_midi = copy.deepcopy(midi_data)
# --- Step 1: Estimate Tempo and Calculate Delay Time in Seconds ---
try:
bpm = midi_data.estimate_tempo()
except:
bpm = 120.0
print(f" - Delay using tempo: {bpm:.2f} BPM")
# This map defines the duration of each note division as a multiplier of a quarter note (a beat).
division_map = {
"Quarter Note": 1.0,
"Dotted 8th Note": 0.75,
"8th Note": 0.5,
"Triplet 8th Note": 1.0 / 3.0,
"16th Note": 0.25
}
beat_duration_s = 60.0 / bpm
division_multiplier = division_map.get(params.s8bit_delay_division, 0.75)
delay_time_s = beat_duration_s * division_multiplier
print(f" - Delay set to {params.s8bit_delay_division}, calculated time: {delay_time_s:.3f}s")
# --- Step 2: Identify the notes that should receive the echo effect ---
notes_to_echo = []
if params.s8bit_delay_on_melody_only:
print(" - Delay will be applied to lead melody notes only.")
all_notes = [note for inst in processed_midi.instruments if not inst.is_drum for note in inst.notes]
all_notes.sort(key=lambda n: n.start)
note_idx = 0
while note_idx < len(all_notes):
current_slice_start = all_notes[note_idx].start
notes_in_slice = [n for n in all_notes[note_idx:] if (n.start - current_slice_start) < 0.02]
if not notes_in_slice:
note_idx += 1
continue
# The highest note in the slice is considered the lead note
notes_in_slice.sort(key=lambda n: n.pitch, reverse=True)
notes_to_echo.append(notes_in_slice[0])
note_idx += len(notes_in_slice)
else:
print(" - Delay will be applied to all non-drum notes.")
notes_to_echo = [note for inst in processed_midi.instruments if not inst.is_drum for note in inst.notes]
if not notes_to_echo:
print(" - No notes found to apply delay to. Skipping.")
return processed_midi
# --- Step 3: Generate echo notes with optional octave shift using the calculated delay time ---
echo_notes = []
bass_note_threshold = 48 # MIDI note for C3
treble_note_threshold = 84 # MIDI note for C6
for i in range(1, params.s8bit_delay_repeats + 1):
for original_note in notes_to_echo:
# Create a copy of the note for the echo
echo_note = copy.copy(original_note)
# --- Octave Shift Logic for both Bass and Treble ---
if params.s8bit_delay_bass_pitch_shift and original_note.pitch < bass_note_threshold:
echo_note.pitch += params.s8bit_delay_bass_pitch_shift
elif params.s8bit_delay_treble_pitch_shift and original_note.pitch > treble_note_threshold:
echo_note.pitch += params.s8bit_delay_treble_pitch_shift
# Use the tempo-synced time and velocity
time_offset = i * delay_time_s
echo_note.start += time_offset
echo_note.end += time_offset
echo_note.velocity = int(echo_note.velocity * (params.s8bit_delay_feedback ** i))
# Only add the echo if its velocity is still audible
if echo_note.velocity > 1:
echo_notes.append(echo_note)
# --- Step 4: Add the echo notes to a new, dedicated instrument track ---
if echo_notes:
# Inherit the program from the first non-drum instrument
# This ensures the echo has the same timbral character as the original sound,
# preventing perceived pitch shifts caused by different harmonic structures.
base_program = 0 # Default to piano if no instruments are found
for inst in midi_data.instruments:
if not inst.is_drum:
base_program = inst.program
break # Use the program of the first non-drum track we find
echo_instrument = pretty_midi.Instrument(program=base_program, is_drum=False, name="Echo Layer")
echo_instrument.notes.extend(echo_notes)
processed_midi.instruments.append(echo_instrument)
print(f" - Generated {len(echo_notes)} tempo-synced echo notes on a new track with program {base_program}.")
return processed_midi
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def apply_butter_highpass_filter(data, cutoff, fs, order=5):
"""Applies a Butterworth highpass filter to a stereo audio signal."""
if cutoff <= 0:
return data
b, a = butter_highpass(cutoff, fs, order=order)
# Apply filter to each channel independently
filtered_data = np.zeros_like(data)
for channel in range(data.shape[1]):
filtered_data[:, channel] = signal.lfilter(b, a, data[:, channel])
return filtered_data
def butter_lowpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
return b, a
def apply_butter_lowpass_filter(data, cutoff, fs, order=5):
"""Applies a Butterworth lowpass filter to a stereo audio signal."""
# A cutoff at or above Nyquist frequency is pointless
if cutoff >= fs / 2:
return data
b, a = butter_lowpass(cutoff, fs, order=order)
filtered_data = np.zeros_like(data)
for channel in range(data.shape[1]):
filtered_data[:, channel] = signal.lfilter(b, a, data[:, channel])
return filtered_data
def one_pole_lowpass(x, cutoff_hz, fs):
"""Simple one-pole lowpass filter (causal), stable and cheap."""
if cutoff_hz <= 0 or cutoff_hz >= fs/2:
return x
dt = 1.0 / fs
rc = 1.0 / (2 * np.pi * cutoff_hz)
alpha = dt / (rc + dt)
y = np.empty_like(x)
y[0] = alpha * x[0]
for n in range(1, len(x)):
y[n] = y[n-1] + alpha * (x[n] - y[n-1])
return y
def smooth_square_or_saw(note_waveform, fs, smooth_ms=0.6):
"""Short triangular smoothing to soften sharp edges (simple anti-alias-ish)."""
if smooth_ms <= 0:
return note_waveform
kernel_len = max(1, int(fs * (smooth_ms/1000.0)))
# triangular kernel
k = np.convolve(np.ones(kernel_len), np.ones(kernel_len)) # triangle shape length=2*kernel_len-1
k = k / k.sum()
# pad and convolve
y = np.convolve(note_waveform, k, mode='same')
return y
def additive_bandlimited_waveform(wave_type, freq, t, fs, max_harmonics_cap=200):
"""
Simple additive band-limited generator:
- saw: sum_{n=1..N} sin(2π n f t)/n
- square: sum odd harmonics sin(2π n f t)/n
N chosen so n*f < fs/2.
This is heavier but yields much less aliasing.
"""
nyq = fs / 2.0
max_n = int(nyq // freq)
if max_n < 1:
return np.zeros_like(t)
max_n = min(max_n, max_harmonics_cap)
y = np.zeros_like(t)
if wave_type == 'Sawtooth':
# saw via Fourier series
for n in range(1, max_n + 1):
y += np.sin(2*np.pi * n * freq * t) / n
# normalization to [-1,1]
y = - (2/np.pi) * y
else: # square
n = 1
while n <= max_n:
y += np.sin(2*np.pi * n * freq * t) / n
n += 2
y = (4/np.pi) * y
# clip tiny numerical overshoot
y = np.clip(y, -1.0, 1.0)
return y
def safe_tanh_distortion(x, strength):
"""Milder soft clipping: scale then tanh, with adjustable drive."""
# make strength between 0..1 typical; map to drive factor
drive = 1.0 + strength * 4.0
return np.tanh(x * drive) / np.tanh(drive)
def prepare_soundfonts():
"""
Ensures a default set of SoundFonts are downloaded, then scans the 'src/sf2'
directory recursively for all .sf2 files.
Returns a dictionary mapping a user-friendly name to its full file path, with
default soundfonts listed first in their specified order.
Downloads soundfont files from the specified Hugging Face Space repository
to a local 'src/sf2' directory if they don't already exist.
Returns a list of local paths to the soundfont files.
"""
SF2_REPO_ID = "asigalov61/Advanced-MIDI-Renderer"
SF2_DIR = "src/sf2"
# This list is now just for ensuring default files exist
# {"Super GM": 0, "Orpheus GM": 1, "Live HQ GM": 2, "Nice Strings + Orchestra": 3, "Real Choir": 4, "Super Game Boy": 5, "Proto Square": 6}
DEFAULT_SF2_FILENAMES = [
"SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
"Orpheus_18.06.2020.sf2",
"Live HQ Natural SoundFont GM.sf2",
"Nice-Strings-PlusOrchestra-v1.6.sf2",
"KBH-Real-Choir-V2.5.sf2",
"SuperGameBoy.sf2",
"ProtoSquare.sf2"
]
# Create the target directory if it doesn't exist
os.makedirs(SF2_DIR, exist_ok=True)
# --- Step 1: Ensure default SoundFonts are available ---
print("Checking for SoundFont files...")
for filename in DEFAULT_SF2_FILENAMES:
local_path = os.path.join(SF2_DIR, filename)
# Check if the file already exists locally to avoid re-downloading
if not os.path.exists(local_path):
print(f"Downloading '{filename}' from Hugging Face Hub...")
try:
# Use hf_hub_download to get the file
# It will be downloaded to the specified local directory
hf_hub_download(
repo_id=SF2_REPO_ID,
repo_type='space', # Specify that the repository is a Space
filename=f"{filename}", # The path to the file within the repository
local_dir=SF2_DIR,
# local_dir_use_symlinks=False # Copy file to the dir for a clean folder structure
)
print(f"'{filename}' downloaded successfully.")
except Exception as e:
print(f"Error downloading {filename}: {e}")
# If download fails, we might not be able to use this soundfont
# --- Step 2: Scan the entire directory for all .sf2 files ---
print(f"Scanning '{SF2_DIR}' for all .sf2 files...")
all_sfs_map = {}
# Use glob with recursive=True to find all .sf2 files in subdirectories
search_pattern = os.path.join(SF2_DIR, '**', '*.sf2')
for full_path in glob.glob(search_pattern, recursive=True):
# Create a user-friendly display name, including subfolder if it exists
relative_path = os.path.relpath(full_path, SF2_DIR)
display_name = os.path.splitext(relative_path)[0].replace("\\", "/") # Use forward slashes for consistency
all_sfs_map[display_name] = full_path
# --- Step 3: Create the final ordered dictionary based on priority ---
ordered_soundfont_map = {}
# Create display names for default files (filename without extension)
default_display_names = [os.path.splitext(f)[0] for f in DEFAULT_SF2_FILENAMES]
# Separate other files from the default ones
other_display_names = [name for name in all_sfs_map.keys() if name not in default_display_names]
other_display_names.sort() # Sort the rest alphabetically
# Add default soundfonts first, maintaining the order from DEFAULT_SF2_FILENAMES
for name in default_display_names:
if name in all_sfs_map: # Check if the file was actually found by the scanner
ordered_soundfont_map[name] = all_sfs_map[name]
# Add all other soundfonts after the default ones
for name in other_display_names:
ordered_soundfont_map[name] = all_sfs_map[name]
return ordered_soundfont_map
# =================================================================================================
# === 8-bit Style Synthesizer (Stereo Enabled) ===
# =================================================================================================
def synthesize_8bit_style(*, midi_data: pretty_midi.PrettyMIDI, fs: int, params: AppParameters, progress: gr.Progress = None):
"""
Synthesizes an 8-bit style audio waveform from a PrettyMIDI object.
This function generates waveforms manually instead of using a synthesizer like FluidSynth.
Includes an optional sub-octave bass booster with adjustable level.
Instruments are panned based on their order in the MIDI file.
Instrument 1 -> Left, Instrument 2 -> Right.
Now supports graded levels for smoothing and vibrato continuity.
This enhanced version includes advanced anti-aliasing and quality features to produce a cleaner, less harsh sound.
"""
total_duration = midi_data.get_end_time()
# Initialize a stereo waveform buffer (2 channels: Left, Right)
waveform = np.zeros((2, int(total_duration * fs) + fs))
num_instruments = len(midi_data.instruments)
# Phase tracking: main oscillator phase for each instrument
osc_phase = {}
# Vibrato phase tracking
vibrato_phase = 0.0
# Retrieve anti-aliasing settings, using getattr for backward compatibility
use_aa = getattr(params, 's8bit_enable_anti_aliasing', False)
# --- Move progress tracking to the note level ---
# 1. First, collect all notes from all instruments into a single list.
all_notes_with_instrument_info = []
for i, instrument in enumerate(midi_data.instruments):
# --- Panning Logic (with override for arpeggiator layer) ---
panning_override = getattr(params, '_temp_panning_override', None)
if panning_override:
if panning_override == "Center":
pan_l, pan_r = 0.707, 0.707
elif panning_override == "Left":
pan_l, pan_r = 1.0, 0.0
elif panning_override == "Right":
pan_l, pan_r = 0.0, 1.0
else: # Default to Stereo for the arp layer
# Wide stereo: pan instruments alternating left and right
if i % 2 == 0:
pan_l, pan_r = 1.0, 0.0 # Even instruments to the left
else:
pan_l, pan_r = 0.0, 1.0 # Odd instruments to the right
else: # Standard panning logic for the main layer
# --- Panning Logic ---
# Default to center-panned mono
pan_l, pan_r = 0.707, 0.707
if num_instruments == 2:
if i == 0: # First instrument panned left
pan_l, pan_r = 1.0, 0.0
elif i == 1: # Second instrument panned right
pan_l, pan_r = 0.0, 1.0
elif num_instruments > 2:
if i == 0: # Left
pan_l, pan_r = 1.0, 0.0
elif i == 1: # Right
pan_l, pan_r = 0.0, 1.0
# Other instruments remain centered
# Store each note along with its parent instrument index and panning info
for note in instrument.notes:
all_notes_with_instrument_info.append({'note': note, 'instrument_index': i, 'pan_l': pan_l, 'pan_r': pan_r})
# Initialize oscillator phase for each instrument
osc_phase[i] = 0.0 # Independent phase tracking for each instrument
# 2. Create an iterable for the main note-processing loop.
notes_iterable = all_notes_with_instrument_info
total_notes = len(notes_iterable)
# 3. Wrap this new iterable with tqdm if a progress object is available.
if progress and hasattr(progress, 'tqdm'):
notes_iterable = progress.tqdm(
notes_iterable,
desc="Synthesizing Notes...",
total=total_notes
)
# 4. The main loop now iterates over individual notes, not instruments.
for item in notes_iterable:
note = item['note']
i = item['instrument_index']
pan_l = item['pan_l']
pan_r = item['pan_r']
freq = pretty_midi.note_number_to_hz(note.pitch)
note_duration = note.end - note.start
num_samples = int(note_duration * fs)
if num_samples <= 0:
continue
t = np.arange(num_samples) / fs
# --- Graded Continuous Vibrato ---
# This now interpolates between a fully reset vibrato and a fully continuous one.
# Use accumulated phase to avoid vibrato reset per note
vib_phase_inc = 2 * np.pi * params.s8bit_vibrato_rate / fs
per_note_vib_phase = 2 * np.pi * params.s8bit_vibrato_rate * t
continuous_vib_phase = vibrato_phase + np.arange(num_samples) * vib_phase_inc
# Weighted average of the two phase types
final_vib_phase = (
per_note_vib_phase * (1 - params.s8bit_continuous_vibrato_level) +
continuous_vib_phase * params.s8bit_continuous_vibrato_level
)
vibrato_lfo = params.s8bit_vibrato_depth * np.sin(final_vib_phase)
# Update the global vibrato phase for the next note
if num_samples > 0:
vibrato_phase = (continuous_vib_phase[-1] + vib_phase_inc) % (2 * np.pi)
# --- Waveform Generation with FM ---
fm_lfo = params.s8bit_fm_modulation_depth * np.sin(2 * np.pi * params.s8bit_fm_modulation_rate * t)
modulated_freq = freq * (1 + fm_lfo)
# --- Waveform Generation (with Anti-Aliasing options) ---
use_additive = use_aa and getattr(params, 's8bit_use_additive_synthesis', False)
if use_additive and params.s8bit_waveform_type in ['Square', 'Sawtooth']:
note_waveform = additive_bandlimited_waveform(params.s8bit_waveform_type, freq, t, fs)
else:
# --- Waveform Generation (Main Oscillator with phase continuity) ---
phase_inc = 2 * np.pi * (modulated_freq + vibrato_lfo) / fs
phase = osc_phase[i] + np.cumsum(phase_inc)
if num_samples > 0:
osc_phase[i] = phase[-1] % (2 * np.pi) # Store last phase
if params.s8bit_waveform_type == 'Square':
note_waveform = signal.square(phase, duty=params.s8bit_pulse_width)
elif params.s8bit_waveform_type == 'Sawtooth':
note_waveform = signal.sawtooth(phase)
else: # Triangle (less prone to aliasing)
note_waveform = signal.sawtooth(phase, width=0.5)
if use_aa and params.s8bit_waveform_type in ['Square', 'Sawtooth']:
edge_smooth_ms = getattr(params, 's8bit_edge_smoothing_ms', 0.5)
note_waveform = smooth_square_or_saw(note_waveform, fs, smooth_ms=edge_smooth_ms)
# --- Intelligent Bass Boost (Frequency-Dependent) ---
if params.s8bit_bass_boost_level > 0:
# --- Step 1: Calculate the dynamic boost level for this specific note ---
cutoff_hz = getattr(params, 's8bit_bass_boost_cutoff_hz', 200.0)
# Create a smooth fade-out curve for the boost effect.
# The effect is at 100% strength at the cutoff frequency,
# and fades to 0% at half the cutoff frequency.
# `clip` ensures the value is between 0 and 1.
dynamic_boost_scale = np.clip((freq - (cutoff_hz / 2)) / (cutoff_hz / 2), 0, 1)
# The final boost level is the user's setting multiplied by our dynamic scale.
final_boost_level = params.s8bit_bass_boost_level * dynamic_boost_scale
# --- Step 2: Apply the boost only if it's still audible ---
if final_boost_level > 0.01: # A small threshold to avoid unnecessary computation
bass_freq = freq / 2.0
# Only add bass if the frequency is reasonably audible
if bass_freq > 20:
# Bass uses a simple square wave, no vibrato, for stability
bass_phase_inc = 2 * np.pi * bass_freq / fs
bass_phase = np.cumsum(np.full(num_samples, bass_phase_inc))
bass_sub_waveform = signal.square(bass_phase, duty=0.5)
# The ducking amount is now also dynamic.
main_level = 1.0 - (0.5 * final_boost_level)
note_waveform = (note_waveform * main_level) + (bass_sub_waveform * final_boost_level)
# --- Noise & Distortion (Reordered and Improved) ---
if params.s8bit_noise_level > 0:
raw_noise = np.random.uniform(-1, 1, num_samples) * params.s8bit_noise_level
if use_aa:
noise_cutoff = getattr(params, 's8bit_noise_lowpass_hz', 9000.0)
raw_noise = one_pole_lowpass(raw_noise, cutoff_hz=noise_cutoff, fs=fs)
note_waveform += raw_noise
# --- Distortion (Wave Shaping) ---
if params.s8bit_distortion_level > 0:
if use_aa:
note_waveform = safe_tanh_distortion(note_waveform, params.s8bit_distortion_level)
else: # Original harsher distortion
# Using a tanh function for a smoother, "warmer" distortion
note_waveform = np.tanh(note_waveform * (1 + params.s8bit_distortion_level * 5))
# --- ADSR Envelope Generation (with improvements) ---
start_amp = note.velocity / 127.0
envelope = np.zeros(num_samples)
min_attack_s = 0.001 # 1 ms minimum attack to prevent clicks
if params.s8bit_envelope_type == 'Plucky (AD Envelope)':
attack_samples = max(int(min_attack_s * fs), min(int(0.005 * fs), num_samples))
# --- Adaptive Decay Logic ---
# This ensures short staccato notes have the same initial decay rate
# as long notes, fixing the perceived low volume issue.
if params.s8bit_adaptive_decay:
# 1. Calculate the "ideal" number of decay samples based on the user's setting.
ideal_decay_samples = int(params.s8bit_decay_time_s * fs)
if ideal_decay_samples <= 0:
ideal_decay_samples = 1 # Avoid division by zero.
# 2. Create the full, "ideal" decay curve from peak to zero.
ideal_decay_curve = np.linspace(start_amp, 0, ideal_decay_samples)
# 3. Determine how many decay samples can actually fit in this note's duration.
actual_decay_samples = num_samples - attack_samples
if actual_decay_samples > 0:
# 4. Take the initial part of the ideal curve, sized to fit the note.
num_samples_to_take = min(len(ideal_decay_curve), actual_decay_samples)
# Apply the attack portion.
envelope[:attack_samples] = np.linspace(0, start_amp, attack_samples)
# Apply the truncated decay curve.
envelope[attack_samples : attack_samples + num_samples_to_take] = ideal_decay_curve[:num_samples_to_take]
# --- Original Decay Logic (Fallback) ---
else:
decay_samples = min(int(params.s8bit_decay_time_s * fs), num_samples - attack_samples)
envelope[:attack_samples] = np.linspace(0, start_amp, attack_samples)
if decay_samples > 0:
envelope[attack_samples:attack_samples+decay_samples] = np.linspace(start_amp, 0, decay_samples)
else: # Sustained
envelope = np.linspace(start_amp, 0, num_samples)
if use_aa and num_samples > 20: # Add a tiny release fade to prevent clicks
release_samples = int(min(0.005*fs, num_samples // 10))
if release_samples > 0:
envelope[-release_samples:] *= np.linspace(1.0, 0.0, release_samples)
# --- Hybrid Note Smoothing (Proportional with an Absolute Cap) ---
# This improved logic calculates the fade duration as a percentage of the note's
# length but caps it at a fixed maximum duration. This provides the best of both worlds:
# it preserves volume on short notes while ensuring long notes have a crisp attack.
if params.s8bit_smooth_notes_level > 0 and num_samples > 10:
# 1. Define the maximum allowable fade time in seconds (e.g., 30ms).
# This prevents fades from becoming too long on sustained notes.
max_fade_duration_s = 0.03
# 2. Calculate the proportional fade length based on the note's duration.
# At level 1.0, this is 10% of the note's start and 10% of its end.
fade_percentage = 0.1 * params.s8bit_smooth_notes_level
proportional_fade_samples = int(num_samples * fade_percentage)
# 3. Calculate the absolute maximum fade length in samples.
absolute_max_fade_samples = int(fs * max_fade_duration_s)
# 4. The final fade_samples is the SMALLEST of the three constraints:
# a) The proportional length.
# b) The absolute maximum length.
# c) Half the note's total length (to prevent overlap).
fade_samples = min(proportional_fade_samples, absolute_max_fade_samples, num_samples // 2)
if fade_samples > 0:
# Apply a fade-in to the attack portion of the envelope.
envelope[:fade_samples] *= np.linspace(0.5, 1.0, fade_samples)
# Apply a fade-out to the tail portion of the envelope.
envelope[-fade_samples:] *= np.linspace(1.0, 0.0, fade_samples)
# Apply envelope to the (potentially combined) waveform
note_waveform *= envelope
# =========================================================================
# === Echo Sustain Logic for Long Plucky Notes (Now works correctly) ===
# =========================================================================
# This feature fills the silent tail of long notes with decaying echoes.
# It is applied only for Plucky envelopes and after the main envelope has been applied.
if params.s8bit_envelope_type == 'Plucky (AD Envelope)' and params.s8bit_echo_sustain and num_samples > 0:
# The duration of the initial pluck is determined by its decay time.
initial_pluck_duration_s = params.s8bit_decay_time_s
initial_pluck_samples = int(initial_pluck_duration_s * fs)
# Check if the note is long enough to even need echoes.
if num_samples > initial_pluck_samples * params.s8bit_echo_trigger_threshold: # Only trigger if there's significant empty space.
# Calculate the properties of the echoes.
echo_delay_samples = int(fs / params.s8bit_echo_rate_hz)
if echo_delay_samples > 0: # Prevent infinite loops
echo_amplitude = start_amp * params.s8bit_echo_decay_factor
# Start placing echoes after the first pluck has finished.
current_sample_offset = initial_pluck_samples
while current_sample_offset < num_samples:
# Ensure there's space for a new echo.
if current_sample_offset + echo_delay_samples <= num_samples:
# Create a very short, plucky envelope for the echo.
echo_attack_samples = min(int(0.002 * fs), echo_delay_samples) # 2ms attack
echo_decay_samples = echo_delay_samples - echo_attack_samples
if echo_decay_samples > 0:
# Create the small echo envelope shape.
echo_envelope = np.zeros(echo_delay_samples)
echo_envelope[:echo_attack_samples] = np.linspace(0, echo_amplitude, echo_attack_samples)
echo_envelope[echo_attack_samples:] = np.linspace(echo_amplitude, 0, echo_decay_samples)
# Create a temporary waveform for the echo and apply the envelope.
# It reuses the main note's frequency and oscillator phase.
# Re-calculating phase here is simpler than tracking, for additive synthesis
phase_inc_echo = 2 * np.pi * freq / fs
phase_echo = np.cumsum(np.full(echo_delay_samples, phase_inc_echo))
if params.s8bit_waveform_type == 'Square':
echo_waveform_segment = signal.square(phase_echo, duty=params.s8bit_pulse_width)
elif params.s8bit_waveform_type == 'Sawtooth':
echo_waveform_segment = signal.sawtooth(phase_echo)
else: # Triangle
echo_waveform_segment = signal.sawtooth(phase_echo, width=0.5)
# Add the enveloped echo on top of the already-enveloped main waveform
note_waveform[current_sample_offset : current_sample_offset + echo_delay_samples] += echo_waveform_segment * echo_envelope
# Prepare for the next echo.
echo_amplitude *= params.s8bit_echo_decay_factor
current_sample_offset += echo_delay_samples
# --- END of Echo Sustain Logic ---
# --- Final Processing Stage (Per-Note) ---
if use_aa:
# 1. Frequency-dependent lowpass filter
harm_limit = getattr(params, 's8bit_harmonic_lowpass_factor', 12.0)
cutoff = min(fs * 0.45, max(3000.0, freq * harm_limit))
note_waveform = one_pole_lowpass(note_waveform, cutoff_hz=cutoff, fs=fs)
# 2. Final Gain and Soft Limiter
final_gain = getattr(params, 's8bit_final_gain', 0.8)
note_waveform *= final_gain
note_waveform = np.tanh(note_waveform) # Soft clip/limit
# --- Add to main waveform buffer ---
start_sample = int(note.start * fs)
end_sample = start_sample + num_samples
if end_sample > waveform.shape[1]:
end_sample = waveform.shape[1]
note_waveform = note_waveform[:end_sample-start_sample]
# Add the mono note waveform to the stereo buffer with panning
waveform[0, start_sample:end_sample] += note_waveform * pan_l
waveform[1, start_sample:end_sample] += note_waveform * pan_r
return waveform # Returns a (2, N) numpy array
def analyze_midi_velocity(midi_path):
midi = pretty_midi.PrettyMIDI(midi_path)
all_velocities = []
print(f"Analyzing velocity for MIDI: {midi_path}")
for i, instrument in enumerate(midi.instruments):
velocities = [note.velocity for note in instrument.notes]
all_velocities.extend(velocities)
if velocities:
print(f"Instrument {i} ({instrument.name}):")
print(f" Notes count: {len(velocities)}")
print(f" Velocity min: {min(velocities)}")
print(f" Velocity max: {max(velocities)}")
print(f" Velocity mean: {np.mean(velocities):.2f}")
else:
print(f"Instrument {i} ({instrument.name}): no notes found.")
if all_velocities:
print("\nOverall MIDI velocity stats:")
print(f" Total notes: {len(all_velocities)}")
print(f" Velocity min: {min(all_velocities)}")
print(f" Velocity max: {max(all_velocities)}")
print(f" Velocity mean: {np.mean(all_velocities):.2f}")
else:
print("No notes found in this MIDI.")
def preview_sound_source(sound_source_name: str, *args):
"""
Generates a short audio preview for either a selected SoundFont or the
8-bit Synthesizer, using the Super Mario Bros. theme as a test melody.
This function acts as a router:
- If a SoundFont is selected, it uses FluidSynth.
- If the 8-bit Synthesizer is selected, it uses the internal `synthesize_8bit_style`
function, capturing the current UI settings for an accurate preview.
Args:
sound_source_name (str): The name of the SoundFont or the 8-bit synth label.
*args: Captures all current UI settings, which are passed to build an
AppParameters object for the 8-bit synth preview.
Returns:
A Gradio-compatible audio tuple (sample_rate, numpy_array).
"""
srate = 44100 # Use a standard sample rate for all previews.
# 1. Create a MIDI object in memory.
preview_midi = pretty_midi.PrettyMIDI()
# Use a lead instrument. Program 81 (Lead 2, sawtooth) is a good, bright default.
instrument = pretty_midi.Instrument(program=81, is_drum=False, name="Preview Lead")
# 2. Define the melody: Super Mario Bros. theme intro
# - tempo: A brisk 200 BPM, so each 0.15s step is a 16th note.
# - notes: A list of tuples (pitch, duration_in_steps)
tempo = 200.0
time_per_step = 60.0 / tempo / 2 # 16th note duration at this tempo
# (Pitch, Duration in steps)
# MIDI Pitch 60 = C4 (Middle C)
melody_data = [
(76, 1), (76, 2), (76, 2), (72, 1), (76, 2), # E E E C E
(79, 4), (67, 4) # G G(low)
]
current_time = 0.0
for pitch, duration_steps in melody_data:
start_time = current_time
end_time = start_time + (duration_steps * time_per_step)
# Add a tiny gap between notes to ensure they re-trigger clearly
note_end_time = end_time - 0.01
note = pretty_midi.Note(
velocity=120, # Use a high velocity for a bright, clear sound
pitch=pitch,
start=start_time,
end=note_end_time
)
instrument.notes.append(note)
current_time = end_time
preview_midi.instruments.append(instrument)
# --- ROUTING LOGIC: Decide which synthesizer to use ---
# CASE 1: 8-bit Synthesizer Preview
if sound_source_name == SYNTH_8_BIT_LABEL:
print("Generating preview for: 8-bit Synthesizer")
try:
# Create a temporary AppParameters object from the current UI settings
params = AppParameters(**dict(zip(ALL_PARAM_KEYS, args)))
# Use the internal synthesizer to render the preview MIDI
audio_waveform = synthesize_8bit_style(midi_data=preview_midi, fs=srate, params=params)
# Normalize and prepare for Gradio
peak_val = np.max(np.abs(audio_waveform))
if peak_val > 0:
audio_waveform /= peak_val
# The synth returns (channels, samples), Gradio needs (samples, channels)
audio_out = (audio_waveform.T * 32767).astype(np.int16)
print("8-bit preview generated successfully.")
return (srate, audio_out)
except Exception as e:
print(f"An error occurred during 8-bit preview generation: {e}")
return None
# CASE 2: SoundFont Preview
else:
soundfont_path = soundfonts_dict.get(sound_source_name)
if not soundfont_path or not os.path.exists(soundfont_path):
print(f"Preview failed: SoundFont file not found at '{soundfont_path}'")
raise gr.Error(f"Could not find the SoundFont file for '{sound_source_name}'.")
try:
print(f"Generating preview for: {sound_source_name}")
# Convert the in-memory MIDI object to a binary stream.
midi_io = io.BytesIO()
preview_midi.write(midi_io)
midi_data = midi_io.getvalue()
# Use the existing rendering function to generate the audio.
# Ensure the output is a tuple (sample_rate, numpy_array)
audio_out = midi_to_colab_audio(
midi_data,
soundfont_path=soundfont_path,
sample_rate=srate,
output_for_gradio=True
)
# Ensure the returned value is exactly what Gradio expects.
# The function `midi_to_colab_audio` should return a NumPy array.
# We must wrap it in a tuple with the sample rate.
if isinstance(audio_out, np.ndarray):
print("SoundFont preview generated successfully.")
return (srate, audio_out)
else:
# If the rendering function fails, it might return something else.
# We handle this to prevent the Gradio error.
print("Preview failed: Rendering function did not return valid audio data.")
return None
except Exception as e:
# Catch any other errors, including from FluidSynth, and report them.
print(f"An error occurred during SoundFont preview generation: {e}")
# It's better to return None than to crash the UI.
# The error will be visible in the console.
return None
def scale_instrument_velocity(instrument, scale=0.8):
for note in instrument.notes:
note.velocity = max(1, min(127, int(note.velocity * scale)))
def normalize_loudness(audio_data, sample_rate, target_lufs=-23.0):
"""
Normalizes the audio data to a target integrated loudness (LUFS).
This provides more consistent perceived volume than peak normalization.
Args:
audio_data (np.ndarray): The audio signal.
sample_rate (int): The sample rate of the audio.
target_lufs (float): The target loudness in LUFS. Defaults to -23.0,
a common standard for broadcast.
Returns:
np.ndarray: The loudness-normalized audio data.
"""
try:
# 1. Measure the integrated loudness of the input audio
meter = pyln.Meter(sample_rate) # create meter
loudness = meter.integrated_loudness(audio_data)
# 2. Calculate the gain needed to reach the target loudness
# The gain is applied in the linear domain, so we convert from dB
loudness_gain_db = target_lufs - loudness
loudness_gain_linear = 10.0 ** (loudness_gain_db / 20.0)
# 3. Apply the gain
normalized_audio = audio_data * loudness_gain_linear
# 4. Final safety check: peak normalize to prevent clipping, just in case
# the loudness normalization results in peaks > 1.0
peak_val = np.max(np.abs(normalized_audio))
if peak_val > 1.0:
normalized_audio /= peak_val
print(f"Warning: Loudness normalization resulted in clipping. Audio was peak-normalized as a safeguard.")
print(f"Audio normalized from {loudness:.2f} LUFS to target {target_lufs} LUFS.")
return normalized_audio
except Exception as e:
print(f"Loudness normalization failed: {e}. Falling back to original audio.")
return audio_data
# =================================================================================================
# === MIDI Merging Function ===
# =================================================================================================
def merge_midis(midi_path_left: str, midi_path_right: str, output_path: str):
"""
Merges two MIDI files into a single MIDI file. This robust version iterates
through ALL instruments in both MIDI files, ensuring no data is lost if the
source files are multi-instrumental.
It applies hard-left panning (Pan=0) to every instrument from the left MIDI
and hard-right panning (Pan=127) to every instrument from the right MIDI.
"""
try:
analyze_midi_velocity(midi_path_left)
analyze_midi_velocity(midi_path_right)
midi_left = pretty_midi.PrettyMIDI(midi_path_left)
midi_right = pretty_midi.PrettyMIDI(midi_path_right)
merged_midi = pretty_midi.PrettyMIDI()
# --- Process ALL instruments from the left channel MIDI ---
if midi_left.instruments:
print(f"Found {len(midi_left.instruments)} instrument(s) in the left channel MIDI.")
# Use a loop to iterate through every instrument
for instrument in midi_left.instruments:
scale_instrument_velocity(instrument, scale=0.8)
# To avoid confusion, we can prefix the instrument name
instrument.name = f"Left - {instrument.name if instrument.name else 'Instrument'}"
# Create and add the Pan Left control change
# Create a Control Change event for Pan (controller number 10).
# Set its value to 0 for hard left panning.
# Add it at the very beginning of the track (time=0.0).
pan_left = pretty_midi.ControlChange(number=10, value=0, time=0.0)
# Use insert() to ensure the pan event is the very first one
instrument.control_changes.insert(0, pan_left)
# Append the fully processed instrument to the merged MIDI
merged_midi.instruments.append(instrument)
# --- Process ALL instruments from the right channel MIDI ---
if midi_right.instruments:
print(f"Found {len(midi_right.instruments)} instrument(s) in the right channel MIDI.")
# Use a loop here as well
for instrument in midi_right.instruments:
scale_instrument_velocity(instrument, scale=0.8)
instrument.name = f"Right - {instrument.name if instrument.name else 'Instrument'}"
# Create and add the Pan Right control change
# Create a Control Change event for Pan (controller number 10).
# Set its value to 127 for hard right panning.
# Add it at the very beginning of the track (time=0.0).
pan_right = pretty_midi.ControlChange(number=10, value=127, time=0.0)
instrument.control_changes.insert(0, pan_right)
merged_midi.instruments.append(instrument)
merged_midi.write(output_path)
print(f"Successfully merged all instruments and panned into '{os.path.basename(output_path)}'")
analyze_midi_velocity(output_path)
return output_path
except Exception as e:
print(f"Error merging MIDI files: {e}")
# Fallback logic remains the same
if os.path.exists(midi_path_left):
print("Fallback: Using only the left channel MIDI.")
return midi_path_left
return None
def is_stereo_midi(midi_path: str) -> bool:
"""
Checks if a MIDI file contains the specific stereo panning control changes
(hard left and hard right) created by the merge_midis function.
Args:
midi_path (str): The file path to the MIDI file.
Returns:
bool: True if both hard-left (0) and hard-right (127) pan controls are found, False otherwise.
"""
try:
midi_data = pretty_midi.PrettyMIDI(midi_path)
found_left_pan = False
found_right_pan = False
for instrument in midi_data.instruments:
for control_change in instrument.control_changes:
# MIDI Controller Number 10 is for Panning.
if control_change.number == 10:
if control_change.value == 0:
found_left_pan = True
elif control_change.value == 127:
found_right_pan = True
# Optimization: If we've already found both, no need to check further.
if found_left_pan and found_right_pan:
return True
return found_left_pan and found_right_pan
except Exception as e:
# If the MIDI file is invalid or another error occurs, assume it's not our special stereo format.
print(f"Could not analyze MIDI for stereo info: {e}")
return False
# =================================================================================================
# === Stage 1: Audio to MIDI Transcription Functions ===
# =================================================================================================
def TranscribePianoAudio(input_file):
"""
Transcribes a WAV or MP3 audio file of a SOLO PIANO performance into a MIDI file.
This uses the ByteDance model.
Args:
input_file_path (str): The path to the input audio file.
Returns:
str: The file path of the generated MIDI file.
"""
print('=' * 70)
print('STAGE 1: Starting Piano-Specific Transcription')
print('=' * 70)
# Generate a unique output filename for the MIDI
fn = os.path.basename(input_file)
fn1 = fn.split('.')[0]
# Use os.path.join to create a platform-independent directory path
output_dir = os.path.join("output", "transcribed_piano_")
out_mid_path = os.path.join(output_dir, fn1 + '.mid')
# Check for the directory's existence and create it if necessary
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('-' * 70)
print(f'Input file name: {fn}')
print(f'Output MIDI path: {out_mid_path}')
print('-' * 70)
# Load audio using the utility function
print('Loading audio...')
(audio, _) = utilities.load_audio(input_file, sr=transcription_sample_rate, mono=True)
print('Audio loaded successfully.')
print('-' * 70)
# Initialize the transcription model
# Use 'cuda' if a GPU is available and configured, otherwise 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Loading transcriptor model... device= {device}')
transcriptor = PianoTranscription(device=device, checkpoint_path=os.path.join("src", "models", "CRNN_note_F1=0.9677_pedal_F1=0.9186.pth"))
print('Transcriptor loaded.')
print('-' * 70)
# Perform transcription
print('Transcribing audio to MIDI (Piano-Specific)...')
# This function call saves the MIDI file to the specified path
transcriptor.transcribe(audio, out_mid_path)
print('Piano transcription complete.')
print('=' * 70)
# Return the path to the newly created MIDI file
return out_mid_path
def TranscribeGeneralAudio(input_file, **kwargs):
"""
Transcribes a general audio file into a MIDI file using basic-pitch.
This is suitable for various instruments and vocals.
"""
print('=' * 70)
print('STAGE 1: Starting General Purpose Transcription')
print('=' * 70)
fn = os.path.basename(input_file)
fn1 = fn.split('.')[0]
output_dir = os.path.join("output", "transcribed_general_")
out_mid_path = os.path.join(output_dir, fn1 + '.mid')
os.makedirs(output_dir, exist_ok=True)
print(f'Input file: {fn}\nOutput MIDI: {out_mid_path}')
# --- Perform transcription using basic-pitch ---
print('Transcribing audio to MIDI (General Purpose)...')
# The predict function handles audio loading internally
model_output, midi_data, note_events = basic_pitch.inference.predict(
audio_path=input_file,
model_or_model_path=ICASSP_2022_MODEL_PATH,
**kwargs
)
# --- Save the MIDI file ---
midi_data.write(out_mid_path)
print('General transcription complete.')
print('=' * 70)
return out_mid_path
# =================================================================================================
# === Stage 2: MIDI Transformation and Rendering Function ===
# =================================================================================================
def Render_MIDI(*, input_midi_path: str, params: AppParameters, progress: gr.Progress = None):
"""
Processes and renders a MIDI file according to user-defined settings.
Can render using SoundFonts or a custom 8-bit synthesizer.
This version supports a parallel arpeggiator workflow, where the original MIDI
and an arpeggiated version are synthesized separately and then mixed together.
Args:
input_midi_path (str): The path to the input MIDI file.
All other arguments are rendering options from the Gradio UI.
Returns:
A tuple containing all the output elements for the Gradio UI.
"""
print('*' * 70)
print('STAGE 2: Starting MIDI Rendering')
print('*' * 70)
# --- File and Settings Setup ---
fn = os.path.basename(input_midi_path)
fn1 = fn.split('.')[0]
# Use os.path.join to create a platform-independent directory path
output_dir = os.path.join("output", "rendered_midi")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Now, join the clean directory path with the filename
new_fn_path = os.path.join(output_dir, fn1 + '_rendered.mid')
try:
with open(input_midi_path, 'rb') as f:
fdata = f.read()
input_midi_md5hash = hashlib.md5(fdata).hexdigest()
except FileNotFoundError:
# Handle cases where the input file might not exist
print(f"Error: Input MIDI file not found at {input_midi_path}")
return [None] * 7 # Return empty values for all outputs
print('=' * 70)
print('Requested settings:')
print(f'Input MIDI file name: {fn}')
print(f'Input MIDI md5 hash: {input_midi_md5hash}')
print('-' * 70)
print(f"Render type: {params.render_type}")
print(f"Soundfont bank: {params.soundfont_bank}")
print(f"Audio render sample rate: {params.render_sample_rate}")
# ... (add other print statements for settings if needed)
print('=' * 70)
# --- MIDI Processing using TMIDIX ---
print('Processing MIDI... Please wait...')
raw_score = MIDI.midi2single_track_ms_score(fdata)
# call the function and store the returned list in a variable.
processed_scores = TMIDIX.advanced_score_processor(raw_score,
return_enhanced_score_notes=True,
apply_sustain=params.render_with_sustains)
# check if the returned list is empty. This happens when transcription finds no notes.
# This check prevents the 'IndexError: list index out of range'.
if not processed_scores:
# If it is empty, print a warning and return a user-friendly error message.
print("Warning: MIDI file contains no processable notes.")
# The number of returned values must match the function's expected output.
# We return a tuple with empty or placeholder values for all 7 output components.
return ("N/A", fn1, "MIDI file contains no notes.", None, None, None, "No notes found.")
# If the list is not empty, it is now safe to get the first element.
escore = processed_scores[0]
# Handle cases where the MIDI might not contain any notes
if not escore:
print("Warning: MIDI file contains no processable notes.")
return ("N/A", fn1, "MIDI file contains no notes.",None, None, None, "No notes found.")
# This line will now work correctly because merge_misaligned_notes is guaranteed to be an integer.
if params.merge_misaligned_notes > 0:
escore = TMIDIX.merge_escore_notes(escore, merge_threshold=params.merge_misaligned_notes)
escore = TMIDIX.augment_enhanced_score_notes(escore, timings_divider=1)
first_note_index = [e[0] for e in raw_score[1]].index('note')
cscore = TMIDIX.chordify_score([1000, escore])
meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]
aux_escore_notes = TMIDIX.augment_enhanced_score_notes(escore, sort_drums_last=True)
song_description = TMIDIX.escore_notes_to_text_description(aux_escore_notes)
print('Done!')
print('=' * 70)
print('Input MIDI metadata:', meta_data[:5])
print('=' * 70)
print('Input MIDI song description:', song_description)
print('=' * 70)
print('Processing...Please wait...')
# A deep copy of the score to be modified
output_score = copy.deepcopy(escore)
# Apply transformations based on render_type
if params.render_type == "Extract melody":
output_score = TMIDIX.add_melody_to_enhanced_score_notes(escore, return_melody=True)
output_score = TMIDIX.recalculate_score_timings(output_score)
elif params.render_type == "Flip":
output_score = TMIDIX.flip_enhanced_score_notes(escore)
elif params.render_type == "Reverse":
output_score = TMIDIX.reverse_enhanced_score_notes(escore)
elif params.render_type == 'Repair Durations':
output_score = TMIDIX.fix_escore_notes_durations(escore, min_notes_gap=0)
elif params.render_type == 'Repair Chords':
fixed_cscore = TMIDIX.advanced_check_and_fix_chords_in_chordified_score(cscore)[0]
output_score = TMIDIX.flatten(fixed_cscore)
elif params.render_type == 'Remove Duplicate Pitches':
output_score = TMIDIX.remove_duplicate_pitches_from_escore_notes(escore)
elif params.render_type == "Add Drum Track":
nd_escore = [e for e in escore if e[3] != 9]
nd_escore = TMIDIX.augment_enhanced_score_notes(nd_escore)
output_score = TMIDIX.advanced_add_drums_to_escore_notes(nd_escore)
for e in output_score:
e[1] *= 16
e[2] *= 16
print('MIDI processing complete.')
print('=' * 70)
# --- Final Processing and Patching ---
if params.render_type != "Render as-is":
print('Applying final adjustments (transpose, align, patch)...')
if params.custom_render_patch != -1: # -1 indicates no change
for e in output_score:
if e[3] != 9: # not a drum channel
e[6] = params.custom_render_patch
if params.render_transpose_value != 0:
output_score = TMIDIX.transpose_escore_notes(output_score, params.render_transpose_value)
if params.render_transpose_to_C4:
output_score = TMIDIX.transpose_escore_notes_to_pitch(output_score, 60) # C4 is MIDI pitch 60
if params.render_align == "Start Times":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score)
elif params.render_align == "Start Times and Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, trim_durations=True)
elif params.render_align == "Start Times and Split Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, split_durations=True)
if params.render_type == "Longest Repeating Phrase":
zscore = TMIDIX.recalculate_score_timings(output_score)
lrno_score = TMIDIX.escore_notes_lrno_pattern_fast(zscore)
if lrno_score is not None:
output_score = lrno_score
else:
output_score = TMIDIX.recalculate_score_timings(TMIDIX.escore_notes_middle(output_score, 50))
if params.render_type == "Multi-Instrumental Summary":
zscore = TMIDIX.recalculate_score_timings(output_score)
c_escore_notes = TMIDIX.compress_patches_in_escore_notes_chords(zscore)
if len(c_escore_notes) > 128:
cmatrix = TMIDIX.escore_notes_to_image_matrix(c_escore_notes, filter_out_zero_rows=True, filter_out_duplicate_rows=True)
smatrix = TPLOTS.square_image_matrix(cmatrix, num_pca_components=max(1, min(5, len(c_escore_notes) // 128)))
output_score = TMIDIX.image_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 250
o[2] *= 250
if params.render_output_as_solo_piano:
output_score = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=(not params.render_remove_drums))
if params.render_remove_drums and not params.render_output_as_solo_piano:
output_score = TMIDIX.strip_drums_from_escore_notes(output_score)
if params.render_type == "Solo Piano Summary":
sp_escore_notes = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=False)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
if len(zscore) > 128:
bmatrix = TMIDIX.escore_notes_to_binary_matrix(zscore)
cmatrix = TMIDIX.compress_binary_matrix(bmatrix, only_compress_zeros=True)
smatrix = TPLOTS.square_binary_matrix(cmatrix, interpolation_order=max(1, min(5, len(zscore) // 128)))
output_score = TMIDIX.binary_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 200
o[2] *= 200
print('Final adjustments complete.')
print('=' * 70)
# --- Saving Processed MIDI File ---
# Save the transformed MIDI data
SONG, patches, _ = TMIDIX.patch_enhanced_score_notes(output_score)
# The underlying function mistakenly adds a '.mid' extension.
# We must pass the path without the extension to compensate.
path_without_ext = new_fn_path.rsplit('.mid', 1)[0]
MIDI.Tegridy_ms_SONG_to_MIDI_Converter(SONG,
output_signature = 'Integrated-MIDI-Processor',
output_file_name = path_without_ext,
track_name='Processed Track',
list_of_MIDI_patches=patches
)
midi_to_render_path = new_fn_path
else:
# If "Render as-is", use the original MIDI data
with open(new_fn_path, 'wb') as f:
f.write(fdata)
midi_to_render_path = new_fn_path
# --- Audio Rendering ---
print('Rendering final audio...')
# Select sample rate
srate = int(params.render_sample_rate)
# --- Conditional Rendering Logic ---
# --- 8-BIT SYNTHESIZER WORKFLOW ---
if params.soundfont_bank == SYNTH_8_BIT_LABEL:
print("Using 8-bit style synthesizer with parallel processing workflow...")
try:
# --- Step 1: Prepare MIDI data, load the MIDI file with pretty_midi for manual synthesis
base_midi = pretty_midi.PrettyMIDI(midi_to_render_path)
# Pre-process the base MIDI for harshness if enabled. This affects BOTH layers.
if getattr(params, 's8bit_enable_midi_preprocessing', False):
base_midi = preprocess_midi_for_harshness(base_midi, params)
# --- Apply Delay/Echo effect to the base MIDI if enabled ---
# This is done BEFORE the arpeggiator, so the clean base_midi
# (which contains the lead melody) gets the delay.
if getattr(params, 's8bit_enable_delay', False):
base_midi = create_delay_effect(base_midi, params)
# --- Apply Arpeggiator if enabled ---
# The arpeggiator will now correctly ignore the new echo track
# because the echo notes are on a separate instrument.
arpeggiated_midi = None
if getattr(params, 's8bit_enable_arpeggiator', False):
# We arpeggiate the (now possibly delayed) base_midi
arpeggiated_midi = arpeggiate_midi(base_midi, params)
# --- Step 2: Render the main (original) layer ---
print(" - Rendering main synthesis layer (including echoes)...")
# Synthesize the waveform, passing new FX parameters to the synthesis function
main_and_echo_waveform = synthesize_8bit_style(
midi_data=base_midi,
fs=srate,
params=params,
progress=progress
)
# --- Isolate and filter the echo part if it exists ---
echo_instrument = None
for inst in base_midi.instruments:
if inst.name == "Echo Layer":
echo_instrument = inst
break
# --- Step 3: Render the delay layers (if enabled) ---
if echo_instrument:
print(" - Processing echo layer audio effects...")
# Create a temporary MIDI object with ONLY the echo instrument
echo_only_midi = pretty_midi.PrettyMIDI()
echo_only_midi.instruments.append(echo_instrument)
# Render ONLY the echo layer to an audio waveform
echo_waveform_raw = synthesize_8bit_style(midi_data=echo_only_midi, fs=srate, params=params)
# --- Start of the Robust Filtering Block ---
# Apply both High-Pass and Low-Pass filters
unfiltered_echo = echo_waveform_raw
filtered_echo = echo_waveform_raw
# --- Apply Filters if requested ---
# Convert to a format filter function expects (samples, channels)
# This is inefficient, we should only do it once.
# Let's assume the filter functions are adapted to take (channels, samples)
# For now, we'll keep the transpose for simplicity.
# We will apply filters on a temporary copy to avoid chaining issues.
temp_filtered_echo = echo_waveform_raw.T
should_filter = False
# Apply High-Pass Filter
if params.s8bit_delay_highpass_cutoff_hz > 0:
print(f" - Applying high-pass filter at {params.s8bit_delay_highpass_cutoff_hz} Hz...")
temp_filtered_echo = apply_butter_highpass_filter(temp_filtered_echo, params.s8bit_delay_highpass_cutoff_hz, srate)
should_filter = True
# Apply Low-Pass Filter
if params.s8bit_delay_lowpass_cutoff_hz < srate / 2:
print(f" - Applying low-pass filter at {params.s8bit_delay_lowpass_cutoff_hz} Hz...")
temp_filtered_echo = apply_butter_lowpass_filter(temp_filtered_echo, params.s8bit_delay_lowpass_cutoff_hz, srate)
should_filter = True
# Convert back and get the difference
if should_filter:
filtered_echo = temp_filtered_echo.T
# To avoid re-rendering, we subtract the unfiltered echo and add the filtered one
# Ensure all waveforms have the same length before math ---
target_length = main_and_echo_waveform.shape[1]
# Pad the unfiltered echo if it's shorter
len_unfiltered = unfiltered_echo.shape[1]
if len_unfiltered < target_length:
unfiltered_echo = np.pad(unfiltered_echo, ((0, 0), (0, target_length - len_unfiltered)))
# Pad the filtered echo if it's shorter
len_filtered = filtered_echo.shape[1]
if len_filtered < target_length:
filtered_echo = np.pad(filtered_echo, ((0, 0), (0, target_length - len_filtered)))
# Now that all shapes are guaranteed to be identical, perform the operation.
main_and_echo_waveform -= unfiltered_echo[:, :target_length]
main_and_echo_waveform += filtered_echo[:, :target_length]
final_waveform = main_and_echo_waveform
# --- Step 4: Render the arpeggiator layer (if enabled) ---
if arpeggiated_midi and arpeggiated_midi.instruments:
print(" - Rendering and mixing arpeggiator layer...")
# Temporarily override panning for the arpeggiator synth call
arp_params = copy.copy(params)
# The synthesize_8bit_style function needs to know how to handle this new panning parameter
# We will pass it via a temporary attribute.
setattr(arp_params, '_temp_panning_override', params.s8bit_arpeggio_panning)
arpeggiated_waveform = synthesize_8bit_style(
midi_data=arpeggiated_midi,
fs=srate,
params=arp_params,
progress=None # Don't show a second progress bar
)
# --- Step 4: Mix the layers together ---
# Ensure waveforms have the same length
len_main = final_waveform.shape[1]
len_arp = arpeggiated_waveform.shape[1]
if len_arp > len_main:
final_waveform = np.pad(final_waveform, ((0, 0), (0, len_arp - len_main)))
elif len_main > len_arp:
arpeggiated_waveform = np.pad(arpeggiated_waveform, ((0, 0), (0, len_main - len_arp)))
final_waveform += arpeggiated_waveform
# --- Step 5: Finalize audio for Gradio, normalize and prepare for Gradio
peak_val = np.max(np.abs(final_waveform))
if peak_val > 0:
final_waveform /= peak_val
# Transpose from (2, N) to (N, 2) and convert to int16 for Gradio
audio_out = (final_waveform.T * 32767).astype(np.int16)
except Exception as e:
print(f"Error during 8-bit synthesis: {e}")
return [None] * 7
# --- SOUNDFONT WORKFLOW ---
else:
print(f"Using SoundFont: {params.soundfont_bank}")
# Get the full path from the global dictionary
soundfont_path = soundfonts_dict.get(params.soundfont_bank)
# Select soundfont
if not soundfont_path or not os.path.exists(soundfont_path):
# If the selected soundfont is not found, inform the user directly via the UI.
raise gr.Error(f"SoundFont file '{params.soundfont_bank}' could not be found. Please check your 'src/sf2' directory or select another SoundFont.")
# # Error handling in case the selected file is not found
# error_msg = f"SoundFont '{params.soundfont_bank}' not found!"
# print(f"ERROR: {error_msg}")
# # Fallback to the first available soundfont if possible
# if soundfonts_dict:
# fallback_key = list(soundfonts_dict.keys())[0]
# soundfont_path = soundfonts_dict[fallback_key]
# print(f"Falling back to '{fallback_key}'.")
# else:
# # If no soundfonts are available at all, raise an error
# raise gr.Error("No SoundFonts are available for rendering!")
with open(midi_to_render_path, 'rb') as f:
midi_file_content = f.read()
audio_out = midi_to_colab_audio(midi_file_content,
soundfont_path=soundfont_path, # Use the dynamically found path
sample_rate=srate,
output_for_gradio=True
)
print('Audio rendering complete.')
print('=' * 70)
# --- Preparing Outputs for Gradio ---
with open(midi_to_render_path, 'rb') as f:
new_md5_hash = hashlib.md5(f.read()).hexdigest()
output_plot = TPLOTS.plot_ms_SONG(output_score, plot_title=f"Score of {fn1}", return_plt=True)
output_midi_summary = str(meta_data)
return new_md5_hash, fn1, output_midi_summary, midi_to_render_path, (srate, audio_out), output_plot, song_description
def analyze_midi_features(midi_data):
"""
Analyzes a PrettyMIDI object to extract musical features for parameter recommendation.
Args:
midi_data (pretty_midi.PrettyMIDI): The MIDI data to analyze.
Returns:
dict or None: A dictionary containing features, or None if the MIDI is empty.
Features: 'note_count', 'instruments_count', 'duration',
'note_density', 'avg_velocity', 'pitch_range'.
"""
all_notes = [note for instrument in midi_data.instruments for note in instrument.notes]
note_count = len(all_notes)
# Return None if the MIDI file has no notes to analyze.
if note_count == 0:
return None
duration = midi_data.get_end_time()
# Avoid division by zero for empty-duration MIDI files.
if duration == 0:
note_density = 0
else:
note_density = note_count / duration
# --- Calculate new required features ---
avg_velocity = sum(note.velocity for note in all_notes) / note_count
avg_pitch = sum(note.pitch for note in all_notes) / note_count
avg_note_length = sum(note.end - note.start for note in all_notes) / note_count
# Calculate pitch range
if note_count > 1:
min_pitch = min(note.pitch for note in all_notes)
max_pitch = max(note.pitch for note in all_notes)
pitch_range = max_pitch - min_pitch
else:
pitch_range = 0
return {
'note_count': note_count,
'instruments_count': len(midi_data.instruments),
'duration': duration,
'note_density': note_density, # Notes per second
'avg_velocity': avg_velocity,
'pitch_range': pitch_range, # In semitones
'avg_pitch': avg_pitch,
'avg_note_length': avg_note_length,
}
def determine_waveform_type(features):
"""
Determines the best waveform type based on analyzed MIDI features.
- Square: Best for most general-purpose, bright melodies.
- Sawtooth: Best for intense, heavy, or powerful leads and basses.
- Triangle: Best for soft, gentle basses or flute-like sounds.
Args:
features (dict): The dictionary of features from analyze_midi_features.
Returns:
str: The recommended waveform type ('Square', 'Sawtooth', or 'Triangle').
"""
# 1. Check for conditions that strongly suggest a Triangle wave (soft bassline)
# MIDI Pitch 52 is ~G#3. If the average pitch is below this, it's likely a bass part.
# If notes are long and the pitch range is narrow, it confirms a simple, melodic bassline.
if features['avg_pitch'] <= 52 and features['avg_note_length'] >= 0.3 and features['pitch_range'] < 12:
return "Triangle"
# 2. Check for conditions that suggest a Sawtooth wave (intense/complex part)
# High note density or a very wide pitch range often indicates an aggressive lead or a complex solo.
# The sawtooth's rich harmonics are perfect for this.
if features['note_density'] >= 6 or features['pitch_range'] >= 18:
return "Sawtooth"
# 3. Default to the most versatile waveform: Square
return "Square"
def recommend_8bit_params(midi_data, default_preset):
"""
Recommends 8-bit synthesizer parameters using a unified, factor-based model.
This "AI" generates a sound profile based on normalized musical features.
Args:
midi_data (pretty_midi.PrettyMIDI): The MIDI data to analyze.
default_preset (dict): A fallback preset if analysis fails.
Returns:
dict: A dictionary of recommended synthesizer parameters.
"""
features = analyze_midi_features(midi_data)
if features is None:
# Return a default preset if MIDI is empty or cannot be analyzed
return default_preset
# --- Rule-based Parameter Recommendation ---
params = {}
# --- 1. Core Timbre Selection ---
# Intelligent Waveform Selection
params['waveform_type'] = determine_waveform_type(features)
# Determine pulse width *after* knowing the waveform.
# This only applies if the waveform is Square.
if params['waveform_type'] == 'Square':
# For Square waves, use pitch complexity to decide pulse width.
# Complex melodies get a thinner sound (0.3) for clarity.
# Simpler melodies get a fuller sound (0.5).
params['pulse_width'] = 0.3 if features['pitch_range'] > 30 else 0.5
else:
# For Sawtooth or Triangle, pulse width is not applicable. Set a default.
params['pulse_width'] = 0.5
# --- 2. Envelope and Rhythm ---
# Determine envelope type based on note density
is_plucky = features['note_density'] > 10
params['envelope_type'] = 'Plucky (AD Envelope)' if is_plucky else 'Sustained (Full Decay)'
params['decay_time_s'] = 0.15 if is_plucky else 0.4
# --- 3. Modulation (Vibrato) ---
# Vibrato depth and rate based on velocity and density
params['vibrato_depth'] = min(max((features['avg_velocity'] - 60) / 20, 0), 10) # More velocity = more depth
if features['note_density'] > 12:
params['vibrato_rate'] = 7.0 # Very fast music -> frantic vibrato
elif features['note_density'] > 6:
params['vibrato_rate'] = 5.0 # Moderately fast music -> standard vibrato
else:
params['vibrato_rate'] = 3.0 # Slow music -> gentle vibrato
# --- 4. Progressive/Graded Parameters using Normalization ---
# Smooth notes level (0.0 to 1.0): More smoothing for denser passages.
# Effective range: 3 to 8 notes/sec.
params['smooth_notes_level'] = min(max((features['note_density'] - 3) / 5.0, 0.0), 1.0) # Smoothen notes in denser passages
# Continuous vibrato level (0.0 to 1.0): Less dense passages get more lyrical, continuous vibrato.
# Effective range: 5 to 10 notes/sec. (Inverted)
params['continuous_vibrato_level'] = 1.0 - min(max((features['note_density'] - 5) / 5.0, 0.0), 1.0) # Lyrical (less dense) music gets connected vibrato
# Noise level (0.0 to 0.1): Higher velocity passages get more "air" or "grit".
# Effective range: velocity 50 to 90.
params['noise_level'] = min(max((features['avg_velocity'] - 50) / 40.0, 0.0), 1.0) * 0.1
# Distortion level (0.0 to 0.1): Shorter notes get more distortion for punch.
# Effective range: note length 0.5s down to 0.25s. (Inverted)
if features['avg_note_length'] < 0.25: # Short, staccato notes
params['distortion_level'] = 0.1
elif features['avg_note_length'] < 0.5: # Medium length notes
params['distortion_level'] = 0.05
else: # Long, sustained notes
params['distortion_level'] = 0.0
# Progressive FM modulation based on a combined complexity factor.
# Normalizes note density and pitch range to a 0-1 scale.
density_factor = min(max((features['note_density'] - 5) / 15, 0), 1) # Effective range 5-20 notes/sec
range_factor = min(max((features['pitch_range'] - 15) / 30, 0), 1) # Effective range 15-45 semitones
# The overall complexity is the average of these two factors.
complexity_factor = (density_factor + range_factor) / 2
params['fm_modulation_depth'] = round(0.3 * complexity_factor, 3)
params['fm_modulation_rate'] = round(200 * complexity_factor, 1)
# Non-linear bass boost
# REFINED LOGIC: Non-linear bass boost based on instrument count.
# More instruments lead to less bass boost to avoid a muddy mix,
# while solo or duo arrangements get a significant boost to sound fuller.
# The boost level has a floor of 0.2 and a ceiling of 1.0.
params['bass_boost_level'] = max(0.2, 1.0 - (features['instruments_count'] - 1) * 0.15)
# Round all float values for cleaner output
for key, value in params.items():
if isinstance(value, float):
params[key] = round(value, 3)
return params
# =================================================================================================
# === Main Application Logic ===
# =================================================================================================
# --- Helper function to encapsulate the transcription pipeline for a single audio file ---
def _transcribe_stem(audio_path: str, base_name: str, temp_dir: str, params: AppParameters):
"""
Takes a single audio file path and runs the full transcription pipeline on it.
This includes stereo/mono handling and normalization.
Returns:
A tuple containing:
- The file path of the resulting transcribed MIDI.
- The dictionary of the final basic_pitch parameters that were actually used.
"""
print(f"\n--- Transcribing Stem: {os.path.basename(audio_path)} ---")
# Load the audio stem to process it
audio_data, native_sample_rate = librosa.load(audio_path, sr=None, mono=False)
# --- Adaptive Parameter Logic ---
final_bp_params = {
"onset_threshold": params.onset_threshold,
"frame_threshold": params.frame_threshold,
"minimum_note_length": params.minimum_note_length,
"minimum_frequency": params.minimum_frequency,
"maximum_frequency": params.maximum_frequency,
"infer_onsets": params.infer_onsets,
"melodia_trick": params.melodia_trick,
"multiple_pitch_bends": params.multiple_pitch_bends,
}
# Check if the user has selected the auto-analysis option from the dropdown.
if params.transcription_method == "General Purpose" and params.basic_pitch_preset_selector == "Auto-Analyze Audio":
adaptive_params = analyze_audio_for_adaptive_params(audio_data, native_sample_rate)
# Update the final_bp_params dictionary with the new adaptive values
final_bp_params.update(adaptive_params)
print(f" - Overriding manual settings with auto-analyzed parameters. final_bp_params: {final_bp_params}")
if params.enable_stereo_processing and audio_data.ndim == 2 and audio_data.shape[0] == 2:
print("Stereo processing enabled for stem.")
left_channel_np = audio_data[0]
right_channel_np = audio_data[1]
normalized_left = normalize_loudness(left_channel_np, native_sample_rate)
normalized_right = normalize_loudness(right_channel_np, native_sample_rate)
temp_left_path = os.path.join(temp_dir, f"{base_name}_left.flac")
temp_right_path = os.path.join(temp_dir, f"{base_name}_right.flac")
sf.write(temp_left_path, normalized_left, native_sample_rate)
sf.write(temp_right_path, normalized_right, native_sample_rate)
print(f"Saved left channel to: {temp_left_path}")
print(f"Saved right channel to: {temp_right_path}")
print("Transcribing left and right channel...")
if params.transcription_method == "General Purpose":
midi_path_left = TranscribeGeneralAudio(temp_left_path, **final_bp_params)
midi_path_right = TranscribeGeneralAudio(temp_right_path, **final_bp_params)
else: # Piano-Specific
midi_path_left = TranscribePianoAudio(temp_left_path)
midi_path_right = TranscribePianoAudio(temp_right_path)
if midi_path_left and midi_path_right:
merged_midi_path = os.path.join(temp_dir, f"{base_name}_merged.mid")
return merge_midis(midi_path_left, midi_path_right, merged_midi_path), final_bp_params
elif midi_path_left:
print("Warning: Right channel transcription failed. Using left channel only.")
return midi_path_left, final_bp_params
elif midi_path_right:
print("Warning: Left channel transcription failed. Using right channel only.")
return midi_path_right, final_bp_params
else:
print(f"Warning: Stereo transcription failed for stem {base_name}.")
return None, {}
else:
print("Mono processing for stem.")
mono_signal_np = np.mean(audio_data, axis=0) if audio_data.ndim > 1 else audio_data
normalized_mono = normalize_loudness(mono_signal_np, native_sample_rate)
temp_mono_path = os.path.join(temp_dir, f"{base_name}_mono.flac")
sf.write(temp_mono_path, normalized_mono, native_sample_rate)
if params.transcription_method == "General Purpose":
return TranscribeGeneralAudio(temp_mono_path, **final_bp_params), final_bp_params
else:
# For piano, there are no bp_params, so we return an empty dict
return TranscribePianoAudio(temp_mono_path), {}
# --- The core processing engine for a single file ---
def run_single_file_pipeline(input_file_path: str, timestamp: str, params: AppParameters, progress: gr.Progress = None):
"""
This is the main processing engine. It takes a file path and a dictionary of all settings,
and performs the full pipeline: load, separate, transcribe, render, re-merge.
It is UI-agnostic and returns file paths and data, not Gradio updates.
It now accepts a Gradio Progress object to report granular progress.
"""
# Helper function to safely update progress
def update_progress(fraction, desc):
if progress:
progress(fraction, desc=desc)
# --- Start timer for this specific file ---
file_start_time = reqtime.time()
filename = os.path.basename(input_file_path)
base_name = os.path.splitext(filename)[0]
# --- Determine file type to select the correct progress timeline ---
is_midi_input = filename.lower().endswith(('.mid', '.midi', '.kar'))
update_progress(0, f"Starting: {filename}")
print(f"\n{'='*20} Starting Pipeline for: {filename} {'='*20}")
# --- Use the provided timestamp for unique filenames ---
timestamped_base_name = f"{base_name}_{timestamp}"
# --- Dictionary to log parameters for each transcribed stem ---
transcription_params_log = {}
# --- Step 1: Check file type and transcribe if necessary ---
if is_midi_input:
# For MIDI files, we start at 0% and directly proceed to the rendering steps.
update_progress(0, "MIDI file detected, skipping transcription...")
print("MIDI file detected. Skipping transcription. Proceeding directly to rendering.")
if is_stereo_midi(input_file_path):
print("\nINFO: Stereo pan information (Left/Right) detected in the input MIDI. It will be rendered in stereo.\n")
midi_path_for_rendering = input_file_path
else:
temp_dir = os.path.join("output", "temp_transcribe") # Define temp_dir early for the fallback
os.makedirs(temp_dir, exist_ok=True)
# --- Audio Loading ---
update_progress(0.1, "Audio file detected, loading...")
print("Audio file detected. Starting pre-processing...")
# --- Robust audio loading with ffmpeg fallback ---
try:
# Try loading directly with torchaudio (efficient for supported formats).
# This works for formats like WAV, MP3, FLAC, OGG, etc.
print("Attempting to load audio with torchaudio...")
audio_tensor, native_sample_rate = torchaudio.load(input_file_path)
print("Torchaudio loading successful.")
except Exception as e:
update_progress(0.15, "Torchaudio failed, trying ffmpeg...")
print(f"Torchaudio failed: {e}. Attempting fallback with ffmpeg...")
try:
# Define a path for the temporary converted file
converted_flac_path = os.path.join(temp_dir, f"{timestamped_base_name}_converted.flac")
# Use ffmpeg to convert the input file to a clean FLAC file on disk
(
ffmpeg
.input(input_file_path)
.output(converted_flac_path, acodec='flac')
.overwrite_output()
.run(capture_stdout=True, capture_stderr=True)
)
# Now, load the newly created and guaranteed-to-be-compatible FLAC file
audio_tensor, native_sample_rate = torchaudio.load(converted_flac_path)
print(f"FFmpeg fallback successful. Loaded from: {converted_flac_path}")
except Exception as ffmpeg_err:
# In batch mode, we just print an error and skip this file
stderr = ffmpeg_err.stderr.decode() if hasattr(ffmpeg_err, 'stderr') else str(ffmpeg_err)
print(f"ERROR: Could not load {filename}. Skipping. FFmpeg error: {stderr}")
return None # Return None to indicate failure
# --- Vocal Separation Logic ---
# This block now handles multi-stem separation, transcription, and merging logic.
separated_stems = {} # This will store the audio tensors for merging
sources = {} # This will hold the tensors for transcription processing
if params.separate_vocals:
model_name = params.separation_model
# --- Demucs Separation Workflow (4-stem) ---
if 'Demucs' in model_name and demucs_model is not None:
update_progress(0.2, "Separating audio with Demucs...")
# Convert to the format Demucs expects (e.g., 44.1kHz, stereo)
audio_tensor_demucs = convert_audio(audio_tensor, native_sample_rate, demucs_model.samplerate, demucs_model.audio_channels)
# Move tensor to GPU if available for faster processing
if torch.cuda.is_available():
audio_tensor_demucs = audio_tensor_demucs.cuda()
print("Separating audio with Demucs... This may take some time.")
# --- Wrap the model call in a no_grad() context ---
with torch.no_grad():
all_stems = apply_model(
demucs_model,
audio_tensor_demucs[None], # The input shape is [batch, channels, samples]
device='cuda' if torch.cuda.is_available() else 'cpu',
progress=True
)[0] # Remove the batch dimension from the output
# --- Clear CUDA cache immediately after use ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("CUDA cache cleared.")
# Populate sources for transcription and separated_stems for merging
sources = {name: stem for name, stem in zip(demucs_model.sources, all_stems)}
# --- Store original stems for potential re-merging ---
for name, tensor in sources.items():
separated_stems[name] = (tensor.cpu(), demucs_model.samplerate)
# --- RoFormer Separation Workflow (2-stem) ---
elif ('BS-RoFormer' in model_name or 'Mel-RoFormer' in model_name):
if not separator_models:
print("Warning: RoFormer models are not loaded. Skipping separation.")
params.separate_vocals = False
else:
roformer_key = 'BS-RoFormer' if 'BS-RoFormer' in model_name else 'Mel-RoFormer'
update_progress(0.2, f"Separating audio with {roformer_key}...")
temp_input_path = os.path.join(temp_dir, f"{timestamped_base_name}_roformer_in.flac")
torchaudio.save(temp_input_path, audio_tensor.cpu(), native_sample_rate)
try:
separator = separator_models[roformer_key]
output_paths = separator.separate(temp_input_path)
vocals_path, accompaniment_path = None, None
for path in output_paths:
basename = os.path.basename(path).lower()
path = os.path.join(temp_dir, path)
if '(vocals)' in basename:
vocals_path = path
elif '(instrumental)' in basename:
accompaniment_path = path
if not vocals_path or not accompaniment_path:
raise RuntimeError(f"Could not find expected vocal/instrumental stems in output: {output_paths}")
print(f"Separation complete. Vocals: {os.path.basename(vocals_path)}, Accompaniment: {os.path.basename(accompaniment_path)}")
vocals_tensor, stem_sr = torchaudio.load(vocals_path)
accompaniment_tensor, stem_sr = torchaudio.load(accompaniment_path)
# Populate 'sources' and 'separated_stems' to match Demucs structure
# This ensures compatibility with downstream logic
sources['vocals'] = vocals_tensor
sources['other'] = accompaniment_tensor # The entire accompaniment
sources['drums'] = torch.zeros_like(accompaniment_tensor) # Dummy tensor
sources['bass'] = torch.zeros_like(accompaniment_tensor) # Dummy tensor
for name, tensor in sources.items():
separated_stems[name] = (tensor.cpu(), stem_sr)
except Exception as e:
print(f"ERROR: {roformer_key} separation failed: {e}. Skipping separation.")
params.separate_vocals = False
# --- Prepare Stems for Transcription ---
if params.separate_vocals and sources: # Check if separation was successful
stems_to_transcribe = {}
# NOTE: When a 2-stem model is used, the UI should ensure 'enable_advanced_separation' is False.
if params.enable_advanced_separation:
# User is in advanced mode (Demucs only)
if params.transcribe_vocals:
stems_to_transcribe['vocals'] = sources['vocals']
if params.transcribe_drums:
stems_to_transcribe['drums'] = sources['drums']
if params.transcribe_bass:
stems_to_transcribe['bass'] = sources['bass']
if params.transcribe_other_or_accompaniment:
stems_to_transcribe['other'] = sources['other']
else:
# Simple mode (Demucs) or RoFormer mode
# This logic correctly combines drums, bass, and other. For RoFormer, drums/bass are zero,
# so this correctly results in just the accompaniment tensor.
accompaniment_tensor = sources['drums'] + sources['bass'] + sources['other']
if params.transcribe_vocals:
stems_to_transcribe['vocals'] = sources['vocals']
if params.transcribe_other_or_accompaniment:
stems_to_transcribe['accompaniment'] = accompaniment_tensor
# --- Transcribe Selected Stems ---
transcribed_midi_paths = []
if stems_to_transcribe:
stem_count = len(stems_to_transcribe)
# The samplerate of all stems from a single separation will be the same
stem_samplerate = separated_stems.get('vocals', (None, native_sample_rate))[1]
for i, (name, tensor) in enumerate(stems_to_transcribe.items()):
update_progress(0.3 + (0.3 * (i / stem_count)), f"Transcribing stem: {name}...")
stem_path = os.path.join(temp_dir, f"{timestamped_base_name}_{name}.flac")
torchaudio.save(stem_path, tensor.cpu(), stem_samplerate)
midi_path, used_bp_params = _transcribe_stem(stem_path, f"{timestamped_base_name}_{name}", temp_dir, params)
if midi_path:
transcribed_midi_paths.append((name, midi_path))
# --- Log the used parameters for this specific stem ---
if used_bp_params:
# Also log which preset was active for this stem
used_bp_params['preset_selector_mode'] = params.basic_pitch_preset_selector
transcription_params_log[name] = used_bp_params
# --- Merge Transcribed MIDIs ---
if not transcribed_midi_paths:
raise gr.Error("Separation was enabled, but no stems were selected for transcription, or transcription failed.")
elif len(transcribed_midi_paths) == 1:
midi_path_for_rendering = transcribed_midi_paths[0][1]
else:
update_progress(0.6, "Merging transcribed MIDIs...")
merged_midi = pretty_midi.PrettyMIDI()
for name, path in transcribed_midi_paths:
try:
midi_stem = pretty_midi.PrettyMIDI(path)
for inst in midi_stem.instruments:
inst.name = f"{name.capitalize()} - {inst.name}"
merged_midi.instruments.append(inst)
except Exception as e:
print(f"Warning: Could not merge MIDI for stem {name}. Error: {e}")
final_merged_midi_path = os.path.join(temp_dir, f"{timestamped_base_name}_full_transcription.mid")
merged_midi.write(final_merged_midi_path)
midi_path_for_rendering = final_merged_midi_path
else: # Standard workflow without separation
# --- Standard Workflow: Transcribe the original full audio ---
audio_to_transcribe_path = os.path.join(temp_dir, f"{timestamped_base_name}_original.flac")
torchaudio.save(audio_to_transcribe_path, audio_tensor, native_sample_rate)
update_progress(0.2, "Transcribing audio to MIDI...")
midi_path_for_rendering, used_bp_params = _transcribe_stem(audio_to_transcribe_path, f"{timestamped_base_name}_original", temp_dir, params)
# --- Populate the log in this workflow as well ---
if used_bp_params:
used_bp_params['preset_selector_mode'] = params.basic_pitch_preset_selector
# Use a standard key like "full_mix" for the log
transcription_params_log["full_mix"] = used_bp_params
print(" - Logged transcription parameters for the full mix.")
if not midi_path_for_rendering or not os.path.exists(midi_path_for_rendering):
print(f"ERROR: Transcription failed for {filename}. Skipping.")
return None
# --- Step 2: Render the FINAL MIDI file with selected options ---
# The progress values are now conditional based on the input file type.
update_progress(0.1 if is_midi_input else 0.6, "Applying MIDI transformations...")
# --- Auto-Recommendation Logic ---
# If the user selected the auto-recommend option, override the parameters
if params.s8bit_preset_selector == "Auto-Recommend (Analyze MIDI)":
update_progress(0.15 if is_midi_input else 0.65, "Auto-recommending 8-bit parameters...")
print("Auto-Recommendation is enabled. Analyzing MIDI features...")
try:
midi_to_analyze = pretty_midi.PrettyMIDI(midi_path_for_rendering)
default_preset = S8BIT_PRESETS[FALLBACK_PRESET_NAME]
recommended_params = recommend_8bit_params(midi_to_analyze, default_preset)
print("Recommended parameters:", recommended_params)
# Update the params object *before* the main pipeline runs
for key, value in recommended_params.items():
setattr(params, f"s8bit_{key}", value)
print("Parameters updated with recommendations.")
except Exception as e:
print(f"Could not auto-recommend parameters for {filename}: {e}.")
# --- Step 2: Render the FINAL MIDI file ---
update_progress(0.2 if is_midi_input else 0.7, "Rendering MIDI to audio...")
print(f"Proceeding to render MIDI file: {os.path.basename(midi_path_for_rendering)}")
# Call the rendering function, Pass dictionaries directly to Render_MIDI
results_tuple = Render_MIDI(input_midi_path=midi_path_for_rendering, params=params, progress=progress)
# --- Final Audio Merging Logic ---
stems_to_merge = []
if params.separate_vocals and separated_stems:
if params.merge_vocals_to_render and 'vocals' in separated_stems:
stems_to_merge.append(separated_stems['vocals'])
if params.enable_advanced_separation:
if params.merge_drums_to_render and 'drums' in separated_stems:
stems_to_merge.append(separated_stems['drums'])
if params.merge_bass_to_render and 'bass' in separated_stems:
stems_to_merge.append(separated_stems['bass'])
if params.merge_other_or_accompaniment and 'other' in separated_stems:
stems_to_merge.append(separated_stems['other'])
else: # Simple mode or RoFormer
if params.merge_other_or_accompaniment:
# This correctly combines the accompaniment, which for RoFormer is just the 'other' stem.
accompaniment_tensor = separated_stems['drums'][0] + separated_stems['bass'][0] + separated_stems['other'][0]
accompaniment_sr = separated_stems['other'][1]
stems_to_merge.append((accompaniment_tensor, accompaniment_sr))
if stems_to_merge:
update_progress(0.9, "Re-merging audio stems...")
rendered_srate, rendered_music_int16 = results_tuple[4]
rendered_music_float = rendered_music_int16.astype(np.float32) / 32767.0
final_mix_tensor = torch.from_numpy(rendered_music_float).T
final_srate = rendered_srate
for stem_tensor, stem_srate in stems_to_merge:
# Resample if necessary
if stem_srate != final_srate:
# Resample all stems to match the rendered audio's sample rate
resampler = torchaudio.transforms.Resample(stem_srate, final_srate)
stem_tensor = resampler(stem_tensor)
# Ensure stem is stereo if mix is stereo
if final_mix_tensor.shape[0] == 2 and stem_tensor.shape[0] == 1:
stem_tensor = stem_tensor.repeat(2, 1)
# Pad and add to the final mix
len_mix = final_mix_tensor.shape[1]
len_stem = stem_tensor.shape[1]
if len_mix > len_stem:
stem_tensor = torch.nn.functional.pad(stem_tensor, (0, len_mix - len_stem))
elif len_stem > len_mix:
final_mix_tensor = torch.nn.functional.pad(final_mix_tensor, (0, len_stem - len_mix))
final_mix_tensor += stem_tensor
# Normalize final mix to prevent clipping
max_abs = torch.max(torch.abs(final_mix_tensor))
if max_abs > 1.0: final_mix_tensor /= max_abs
# Convert back to the required format (int16 numpy array)
merged_audio_int16 = (final_mix_tensor.T.numpy() * 32767).astype(np.int16)
# Update the results tuple with the newly merged audio
temp_results_list = list(results_tuple)
temp_results_list[4] = (final_srate, merged_audio_int16)
results_tuple = tuple(temp_results_list) # results_tuple is now updated
print("Re-merging complete.")
# --- Save final audio and return path ---
update_progress(0.95, "Saving final files...")
final_srate, final_audio_data = results_tuple[4]
final_midi_path_from_render = results_tuple[3] # Get the path of the processed MIDI
# --- Use timestamped names for final outputs ---
output_audio_dir = os.path.join("output", "final_audio")
output_midi_dir = os.path.join("output", "final_midi")
os.makedirs(output_audio_dir, exist_ok=True)
os.makedirs(output_midi_dir, exist_ok=True)
final_audio_path = os.path.join(output_audio_dir, f"{timestamped_base_name}_rendered.flac")
# Also, copy the final processed MIDI to a consistent output directory with a timestamped name
final_midi_path = os.path.join(output_midi_dir, f"{timestamped_base_name}_processed.mid")
# --- Save audio with embedded parameter metadata ---
try:
# Generate the metadata string from the final parameters used for the render.
metadata_string = format_params_for_metadata(params, transcription_params_log)
sf.write(final_audio_path, final_audio_data, final_srate)
audio = FLAC(final_audio_path)
audio["comment"] = metadata_string
audio.save()
print(f" - Successfully saved audio with embedded parameters to {os.path.basename(final_audio_path)}")
except Exception as e:
print(f" - Warning: Could not save audio with metadata. Error: {e}")
print(" - Falling back to standard save method.")
# Fallback to the original simple write method if the advanced one fails.
sf.write(final_audio_path, final_audio_data, final_srate)
# Use shutil to copy the final midi file to its new home
shutil.copy(final_midi_path_from_render, final_midi_path)
# --- Log the processing time for this specific file at the end ---
file_processing_time = reqtime.time() - file_start_time
print(f"--- Pipeline finished for {filename} in {file_processing_time:.2f} seconds. ---")
print(f"Output Audio: {final_audio_path}\nOutput MIDI: {final_midi_path}")
# Return a dictionary of all results for the wrappers to use
results = {
"final_audio_path": final_audio_path,
"final_midi_path": final_midi_path,
"md5_hash": results_tuple[0],
"title": results_tuple[1],
"summary": results_tuple[2],
"plot": results_tuple[5],
"description": results_tuple[6]
}
update_progress(1.0, "Done!")
# Return both the results and the final state of the parameters object
return results, params
# =================================================================================================
# === Gradio UI Wrappers ===
# =================================================================================================
class BatchProgressTracker:
"""
A custom progress tracker for batch processing that can update a main
progress bar and also create its own tqdm-style sub-progress bars.
"""
def __init__(self, main_progress: gr.Progress, total_files: int, current_file_index: int, filename: str):
self._main_progress = main_progress
self._total_files = total_files
self._current_file_index = current_file_index
self._filename = filename
self._progress_per_file = 1 / total_files if total_files > 0 else 0
def __call__(self, local_fraction: float, desc: str = ""):
"""Makes the object callable like a function for simple progress updates."""
overall_fraction = (self._current_file_index / self._total_files) + (local_fraction * self._progress_per_file)
full_desc = f"({self._current_file_index + 1}/{self._total_files}) {self._filename}: {desc}"
# Update the main progress bar
self._main_progress(overall_fraction, desc=full_desc)
def tqdm(self, iterable, desc="", total=None):
"""Provides a tqdm method that delegates to the original gr.Progress object."""
# The description for the sub-progress bar
tqdm_desc = f"({self._current_file_index + 1}/{self._total_files}) {self._filename}: {desc}"
# Use the original gr.Progress object to create the tqdm iterator
return self._main_progress.tqdm(iterable, desc=tqdm_desc, total=total)
# --- Thin wrapper for batch processing ---
def batch_process_files(input_files, progress=gr.Progress(track_tqdm=True), *args):
"""
Gradio wrapper for batch processing. It iterates through files, calls the core pipeline,
and collects the output file paths. It now provides detailed, nested progress updates.
"""
if not input_files:
print("No files uploaded for batch processing.")
return [], [] # Return two empty lists
# --- Start timer for the entire batch ---
batch_start_time = reqtime.time()
# --- Generate a single timestamp for the entire batch job ---
batch_timestamp = reqtime.strftime("%Y%m%d-%H%M%S")
# Create the AppParameters object from the flat list of UI values
params = AppParameters(**dict(zip(ALL_PARAM_KEYS, args)))
output_audio_paths = []
output_midi_paths = [] # List to collect MIDI file paths
total_files = len(input_files)
# Initialize progress at 0%
progress(0, desc="Starting Batch Process...")
for i, file_obj in enumerate(input_files):
# The input from gr.File is a tempfile object, we need its path
input_path = file_obj.name
filename = os.path.basename(input_path)
# --- Use the new BatchProgressTracker class ---
# Instead of a simple function, create an instance of our tracker class.
# This object can both update the main progress and has a .tqdm method.
batch_progress_tracker = BatchProgressTracker(
main_progress=progress,
total_files=total_files,
current_file_index=i,
filename=filename
)
# --- Pass the batch_timestamp to the pipeline ---
results, _ = run_single_file_pipeline(input_path, batch_timestamp, copy.copy(params), progress=batch_progress_tracker)
if results:
if results.get("final_audio_path"):
output_audio_paths.append(results["final_audio_path"])
if results.get("final_midi_path"):
output_midi_paths.append(results["final_midi_path"]) # Collect MIDI path
# Ensure the progress bar reaches 100% upon completion
progress(1, desc="Batch Process Complete!")
# --- Calculate and print the total batch time ---
total_batch_time = reqtime.time() - batch_start_time
print(f"\nBatch processing complete. {len(output_audio_paths)} of {total_files} files processed successfully.")
print(f"Total batch execution time: {total_batch_time:.2f} seconds.")
# --- Return both lists of paths ---
return output_audio_paths, output_midi_paths
# --- The original function is now a thin wrapper for the single file UI ---
def process_and_render_file(input_file, *args, progress=gr.Progress()):
"""
Gradio wrapper for the single file processing UI. Packs UI values into an AppParameters object.
Calls the core pipeline and formats the output for all UI components.
Main function to handle file processing. It determines the file type and calls the
appropriate functions for transcription and/or rendering based on user selections.
Now includes a progress bar.
"""
if input_file is None:
# Return a list of updates to clear all output fields and UI controls
return [gr.update(value=None)] * (7 + 14) # 7 results + 14 UI controls (13 synth + 1 preset selector)
# --- Start timer for the single file job ---
job_start_time = reqtime.time()
# --- Generate a timestamp for this single job ---
single_file_timestamp = reqtime.strftime("%Y%m%d-%H%M%S")
# Create the AppParameters object from the flat list of UI values
# The first value in *args is s8bit_preset_selector, the rest match the keys
params = AppParameters(input_file=input_file, **dict(zip(ALL_PARAM_KEYS, args)))
# Run the core pipeline, passing the timestamp and progress to the pipeline
results, final_params = run_single_file_pipeline(input_file, single_file_timestamp, params, progress=progress)
if results is None:
raise gr.Error("File processing failed. Check console for details.")
# --- Calculate and print the total job time ---
total_job_time = reqtime.time() - job_start_time
print(f"Total single-file job execution time: {total_job_time:.2f} seconds.")
# --- Prepare UI updates using the returned final_params ---
# This ensures the UI always reflects the parameters that were actually used for the render.
final_ui_updates = []
# Logic to decide what the preset selector should show after the run
if params.s8bit_preset_selector == "Auto-Recommend (Analyze MIDI)":
# After auto-recommendation, the state becomes "Custom"
final_ui_updates.append(gr.update(value="Custom"))
else:
# Otherwise, just keep the user's current selection
final_ui_updates.append(gr.update(value=final_params.s8bit_preset_selector))
# Get the keys for the 13 synthesizer controls (excluding the preset selector itself)
s8bit_control_keys = [key for key in ALL_PARAM_KEYS if key.startswith('s8bit_') and key != 's8bit_preset_selector']
# Always update all 13 controls to match the final parameters used in the backend
for key in s8bit_control_keys:
value = getattr(final_params, key)
# Explicitly convert numpy numeric types to native Python types.
# This prevents them from being serialized as strings in the UI,
# which would cause a TypeError on the next run.
if isinstance(value, np.generic):
value = value.item()
final_ui_updates.append(value)
# Format the main results for the output components
main_results = [
results['md5_hash'], results['title'], results['summary'],
results['final_midi_path'], results['final_audio_path'],
results['plot'], results['description']
]
# The total return list now has a consistent structure and logic
return main_results + final_ui_updates
# =================================================================================================
# === Gradio UI Setup ===
# =================================================================================================
if __name__ == "__main__":
# Initialize the app: download model (if needed) and apply patches
# Set to False if you don't have 'requests' or 'tqdm' installed
initialize_app()
# --- Prepare soundfonts and make the map globally accessible ---
global soundfonts_dict, demucs_model, separator_models
# On application start, download SoundFonts from Hugging Face Hub if they don't exist.
soundfonts_dict = prepare_soundfonts()
print(f"Found {len(soundfonts_dict)} local SoundFonts.")
if not soundfonts_dict:
print("\nWARNING: No SoundFonts were found or could be downloaded.")
print("Rendering with SoundFonts will fail. Only the 8-bit synthesizer will be available.")
# --- Pre-load the Demucs model on startup for efficiency ---
print("Loading Demucs model (htdemucs_ft), this may take a moment on first run...")
try:
demucs_model = get_model(name='htdemucs_ft')
if torch.cuda.is_available():
demucs_model = demucs_model.cuda()
print("Demucs model loaded successfully.")
except Exception as e:
print(f"Warning: Could not load Demucs model. Vocal separation will not be available. Error: {e}")
demucs_model = None
# --- Pre-load BS-RoFormer and Mel-RoFormer models ---
separator_models: dict[str, Separator] = {}
try:
temp_dir = os.path.join("output", "temp_transcribe")
print("Loading BS-RoFormer model...")
bs_roformer = Separator(output_dir=temp_dir, output_format='flac', model_file_dir=os.path.join("src", "models"))
bs_roformer.load_model("model_bs_roformer_ep_317_sdr_12.9755.ckpt")
separator_models['BS-RoFormer'] = bs_roformer
print("BS-RoFormer model loaded successfully.")
print("Loading Mel-RoFormer model...")
mel_roformer = Separator(output_dir=temp_dir, output_format='flac', model_file_dir=os.path.join("src", "models"))
mel_roformer.load_model("model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt")
separator_models['Mel-RoFormer'] = mel_roformer
print("Mel-RoFormer model loaded successfully.")
except Exception as e:
print(f"Warning: Could not load RoFormer models. They will not be available for separation. Error: {e}")
# --- Dictionary containing descriptions for each render type ---
RENDER_TYPE_DESCRIPTIONS = {
"Render as-is": "**Mode: Pass-through.** Renders the MIDI file directly without any modifications. Advanced MIDI options will be ignored.",
"Custom render": "**Mode: Activate Advanced Options.** Applies all settings from the 'Advanced MIDI Rendering Options' accordion without making other structural changes to the MIDI.",
"Extract melody": "**Action: Simplify.** Analyzes all tracks and attempts to isolate and render only the main melody line.",
"Flip": "**Action: Experimental.** Inverts the pitch of each note around the song's average pitch.",
"Reverse": "**Action: Experimental.** Reverses the playback order of all notes in the MIDI file.",
"Repair Durations": "**Action: Fix.** Recalculates note durations to ensure they connect smoothly (legato), filling any small gaps.",
"Repair Chords": "**Action: Fix.** Analyzes and aligns notes that occur at similar times to form cleaner, more structured chords.",
"Remove Duplicate Pitches": "**Action: Simplify.** If multiple instruments play the exact same pitch at the same time, it keeps only one.",
"Longest Repeating Phrase": "**Action: Analyze.** Finds the longest, most-repeated musical phrase (often the chorus) and renders only that section.",
"Multi-Instrumental Summary": "**Action: AI Summary.** Creates a short, compressed summary of a complex, multi-instrument song.",
"Solo Piano Summary": "**Action: AI Summary.** First converts the song to a solo piano arrangement, then creates a short, compressed summary.",
"Add Drum Track": "**Action: Enhance.** Analyzes the rhythm of the MIDI and automatically generates a basic drum track to accompany it."
}
# --- Define a constant for the fallback preset name ---
# This prevents errors if the preset name is changed in the dictionary.
FALLBACK_PRESET_NAME = "Generic Chiptune Loop"
# --- Data structure for 8-bit synthesizer presets ---
# Comprehensive preset dictionary with new FX parameters for all presets
# Comprehensive preset dictionary including new JRPG and Handheld classics
# Note: Vibrato depth is mapped to a representative value on the 0-50 Hz slider.
S8BIT_PRESETS = {
# --- Classic Chiptune ---
"Mario (Super Mario Bros / スーパーマリオブラザーズ)": {
# Description: A bright square wave with a per-note vibrato, producing the classic bouncy platformer sound.
'waveform_type': 'Square', 'pulse_width': 0.3, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.25,
'vibrato_rate': 5.0, 'vibrato_depth': 5,
'smooth_notes_level': 0.8,
'continuous_vibrato_level': 0.25,
'bass_boost_level': 0.2, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Mega Man (Rockman / ロックマン)": {
# Description: A thin, sharp square wave lead with fast vibrato, iconic for its driving, heroic melodies.
'waveform_type': 'Square', 'pulse_width': 0.2, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.15,
'vibrato_rate': 6.0, 'vibrato_depth': 8,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.05,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Zelda (The Legend of Zelda / ゼルダの伝説)": {
# Description: The classic pure triangle wave lead, perfect for heroic and adventurous overworld themes.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.3,
'vibrato_rate': 4.5, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.15, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Kirby's Bubbly Melody (Hoshi no Kirby / 星のカービィ)": {
# Description: A soft, round square wave with a bouncy vibrato, creating a cheerful and adorable sound.
'waveform_type': 'Square', 'pulse_width': 0.4, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.2,
'vibrato_rate': 6.0, 'vibrato_depth': 4,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.3, # Formerly False (0.0); adds a hint of continuity for more liveliness.
'bass_boost_level': 0.1, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Pokémon (Game Boy Classics / ポケットモンスター)": {
# Description: A full, friendly square wave sound, capturing the cheerful and adventurous spirit of early handheld RPGs.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.22,
'vibrato_rate': 5.0, 'vibrato_depth': 5,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.25, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Castlevania (Akumajō Dracula / 悪魔城ドラキュラ)": {
# Description: A sharp square wave with dramatic vibrato, ideal for fast, gothic, and baroque-inspired melodies.
'waveform_type': 'Square', 'pulse_width': 0.25, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.18,
'vibrato_rate': 6.5, 'vibrato_depth': 6,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.35, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Final Fantasy (Arpeggio / ファイナルファンタジー)": {
# Description: A perfect, clean square wave with zero vibrato, creating the iconic, crystal-clear arpeggio sound.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.22,
'vibrato_rate': 5.0, 'vibrato_depth': 0,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.2,
'bass_boost_level': 0.2, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"ONI V (Wafu Mystic / ONI V 隠忍を継ぐ者)": {
# Description: A solemn triangle wave with a slow, expressive vibrato, evoking the mysterious atmosphere of Japanese folklore.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 3.5, 'vibrato_depth': 3,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.4, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Advanced System Impressions ---
"Commodore 64 (SID Feel)": {
# Description: (Impression) Uses high-speed, shallow vibrato to mimic the characteristic "buzzy" texture of the SID chip's PWM.
'waveform_type': 'Square', 'pulse_width': 0.25, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.25,
'vibrato_rate': 8.0, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.3,
'bass_boost_level': 0.2, 'noise_level': 0.05, 'distortion_level': 0.1,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Megadrive/Genesis (FM Grit)": {
# Description: (Impression) Uses FM, distortion, and noise to capture the gritty, metallic, and aggressive tone of the YM2612 chip.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.18,
'vibrato_rate': 0.0, 'vibrato_depth': 0,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.4, 'noise_level': 0.1, 'distortion_level': 0.2,
'fm_modulation_depth': 0.2, 'fm_modulation_rate': 150
},
"PC-98 (Touhou Feel / 東方Project)": {
# Description: (Impression) A very sharp square wave with fast FM, emulating the bright, high-energy leads of Japanese PC games.
'waveform_type': 'Square', 'pulse_width': 0.15, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.12,
'vibrato_rate': 7.5, 'vibrato_depth': 7,
'smooth_notes_level': 0.95,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.1, 'fm_modulation_rate': 200
},
"Roland SC-88 (GM Vibe)": {
# Description: (Impression) A clean, stable triangle wave with no effects, mimicking the polished, sample-based sounds of General MIDI.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.35,
'vibrato_rate': 0, 'vibrato_depth': 0,
'smooth_notes_level': 1.0,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.1, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Action & Rock Leads ---
"Falcom Ys (Rock Lead / イース)": {
# Description: A powerful sawtooth with slight distortion, emulating the driving rock organ and guitar leads of action JRPGs.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.15,
'vibrato_rate': 5.5, 'vibrato_depth': 6,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.8,
'bass_boost_level': 0.4, 'noise_level': 0.05, 'distortion_level': 0.15,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Arcade Brawler Lead (Street Fighter / ストリートファイター)": {
# Description: A gritty sawtooth lead with a hard attack, capturing the high-energy feel of classic fighting games.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.15,
'vibrato_rate': 5.0, 'vibrato_depth': 6,
'smooth_notes_level': 0.8,
'continuous_vibrato_level': 0.7,
'bass_boost_level': 0.4, 'noise_level': 0.05, 'distortion_level': 0.1,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Rhythm Pop Lead (Rhythm Tengoku / リズム天国)": {
# Description: A clean, round square wave perfect for the snappy, catchy feel of rhythm games.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.18,
'vibrato_rate': 4.5, 'vibrato_depth': 4,
'smooth_notes_level': 0.9, # Formerly True -> 1.0; slightly reduced for a bit more attack.
'continuous_vibrato_level': 0.8, # Formerly True -> 1.0; slightly weakened for more defined note transitions.
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Epic & Orchestral Pads ---
"Dragon Quest (Orchestral Feel / ドラゴンクエスト)": {
# Description: A pure triangle wave with a long decay, mimicking the grand, orchestral feel of a classical flute or string section.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.6,
'vibrato_rate': 3.0, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Mystic Mana Pad (Secret of Mana / 聖剣伝説2)": {
# Description: A warm, ethereal square wave pad with slow vibrato, capturing a feeling of fantasy and wonder.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.5,
'vibrato_rate': 2.5, 'vibrato_depth': 4,
'smooth_notes_level': 1.0,
'continuous_vibrato_level': 0.95,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Modern JRPG Pad (Persona / ペルソナ)": {
# Description: A warm, stylish square wave pad, capturing the modern, pop/jazz-infused feel of the Persona series.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.5,
'vibrato_rate': 2.5, 'vibrato_depth': 4,
'smooth_notes_level': 1.0,
'continuous_vibrato_level': 0.95,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Tactical Brass (Fire Emblem / ファイアーエムブレム)": {
# Description: A powerful, sustained sawtooth emulating the bold, heroic synth-brass of Fire Emblem's tactical themes.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 3.5, 'vibrato_depth': 5,
'smooth_notes_level': 0.95,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.5, 'noise_level': 0.1, 'distortion_level': 0.15,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Mecha & Tactics Brass (Super Robot Wars / スーパーロボット大戦)": {
# Description: A powerful, sustained sawtooth emulating the bold, heroic synth-brass of strategy and mecha anime themes.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 3.5, 'vibrato_depth': 5,
'smooth_notes_level': 0.95,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.5, 'noise_level': 0.1, 'distortion_level': 0.15,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Dark/Boss Atmosphere (Shin Megami Tensei / 真・女神転生)": {
# Description: An aggressive sawtooth, inspired by the dark, rock-infused themes of SMT.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.35,
'vibrato_rate': 7.0, 'vibrato_depth': 12,
'smooth_notes_level': 0.1,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.4, 'noise_level': 0.15, 'distortion_level': 0.25,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Vocal Synthesis ---
"8-Bit Vocal Lead": {
# Description: A soft, sustained triangle wave with gentle vibrato to mimic a singing voice.
'waveform_type': 'Triangle',
'pulse_width': 0.5,
'envelope_type': 'Sustained (Full Decay)',
'decay_time_s': 0.8,
'vibrato_rate': 5.5,
'vibrato_depth': 4, # Mapped from the suggested 0.15 range
'bass_boost_level': 0.1,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.9,
'noise_level': 0.02,
'distortion_level': 0.0,
'fm_modulation_depth': 0.05,
'fm_modulation_rate': 20
},
"8-Bit Male Vocal": {
# Description: A deeper, fuller triangle wave with more bass and slower vibrato for a masculine feel.
'waveform_type': 'Triangle',
'pulse_width': 0.5,
'envelope_type': 'Sustained (Full Decay)',
'decay_time_s': 1.0,
'vibrato_rate': 5.0,
'vibrato_depth': 3, # Mapped from the suggested 0.12 range
'bass_boost_level': 0.3,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'noise_level': 0.015,
'distortion_level': 0.0,
'fm_modulation_depth': 0.08,
'fm_modulation_rate': 25
},
"8-Bit Female Vocal": {
# Description: A brighter, lighter triangle wave with faster vibrato and less bass for a feminine feel.
'waveform_type': 'Triangle',
'pulse_width': 0.5,
'envelope_type': 'Sustained (Full Decay)',
'decay_time_s': 0.7,
'vibrato_rate': 6.0,
'vibrato_depth': 5, # Mapped from the suggested 0.18 range
'bass_boost_level': 0.05,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.92,
'noise_level': 0.025,
'distortion_level': 0.0,
'fm_modulation_depth': 0.04,
'fm_modulation_rate': 30
},
"Lo-Fi Vocal": {
# Description: A gritty, noisy square wave with a short decay to simulate a low-resolution vocal sample.
'waveform_type': 'Square',
'pulse_width': 0.48,
'envelope_type': 'Plucky (AD Envelope)', # "Short" implies a plucky, not sustained, envelope
'decay_time_s': 0.4,
'vibrato_rate': 4.8,
'vibrato_depth': 2, # Mapped from the suggested 0.10 range
'bass_boost_level': 0.1,
'smooth_notes_level': 0.65,
'continuous_vibrato_level': 0.6,
'noise_level': 0.05,
'distortion_level': 0.05,
'fm_modulation_depth': 0.02,
'fm_modulation_rate': 20
},
# --- Sound FX & Experimental ---
"Sci-Fi Energy Field": {
# Description: (SFX) High-speed vibrato and noise create a constant, shimmering hum suitable for energy shields or force fields.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 10.0, 'vibrato_depth': 3,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.1, 'noise_level': 0.1, 'distortion_level': 0.0,
'fm_modulation_depth': 0.05, 'fm_modulation_rate': 50
},
"Industrial Alarm": {
# Description: (SFX) Extreme vibrato rate on a sawtooth wave produces a harsh, metallic, dissonant alarm sound.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.2,
'vibrato_rate': 15.0, 'vibrato_depth': 8,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.3, 'noise_level': 0.2, 'distortion_level': 0.3,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Laser Charge-Up": {
# Description: (SFX) Extreme vibrato depth creates a dramatic, rising pitch effect, perfect for sci-fi weapon sounds.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.3,
'vibrato_rate': 4.0, 'vibrato_depth': 25,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.95,
'bass_boost_level': 0.2, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Unstable Machine Core": {
# Description: (SFX) Maximum depth and distortion create a chaotic, atonal noise, simulating a machine on the verge of exploding.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.5,
'vibrato_rate': 1.0, 'vibrato_depth': 50,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.5, 'noise_level': 0.3, 'distortion_level': 0.4,
'fm_modulation_depth': 0.5, 'fm_modulation_rate': 10
},
"Hardcore Gabber Kick": {
# Description: (Experimental) Maximum bass boost and distortion create an overwhelmingly powerful, clipped kick drum sound.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.1,
'vibrato_rate': 0, 'vibrato_depth': 0,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.8, 'noise_level': 0.2, 'distortion_level': 0.5,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Utility & Starting Points ---
"Generic Chiptune Loop": {
# Description: A well-balanced, pleasant square wave lead that serves as a great starting point for custom sounds.
'waveform_type': 'Square', 'pulse_width': 0.25, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.2,
'vibrato_rate': 5.5, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.25, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
}
# --- Data structure for basic_pitch transcription presets ---
BASIC_PITCH_PRESETS = {
# --- General & All-Purpose ---
"Default (Balanced)": {
'description': "A good all-around starting point for most music types.",
'onset_threshold': 0.5, 'frame_threshold': 0.3, 'minimum_note_length': 128,
'minimum_frequency': 60, 'maximum_frequency': 4000,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': False
},
"Anime / J-Pop": {
'description': "For tracks with clear melodies and pop/rock arrangements.",
'onset_threshold': 0.5, 'frame_threshold': 0.3, 'minimum_note_length': 150,
'minimum_frequency': 40, 'maximum_frequency': 2500,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
# --- Specific Instruments ---
"Solo Vocals": {
'description': "Optimized for a single singing voice. Sensitive to nuances.",
'onset_threshold': 0.4, 'frame_threshold': 0.3, 'minimum_note_length': 100,
'minimum_frequency': 80, 'maximum_frequency': 1200,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Solo Piano": {
'description': "For solo piano with a wide dynamic and frequency range.",
'onset_threshold': 0.4, 'frame_threshold': 0.3, 'minimum_note_length': 120,
'minimum_frequency': 27, 'maximum_frequency': 4200,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Acoustic Guitar": {
'description': "Balanced for picked or strummed acoustic guitar.",
'onset_threshold': 0.5, 'frame_threshold': 0.3, 'minimum_note_length': 90,
'minimum_frequency': 80, 'maximum_frequency': 2500,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': False
},
"Bass Guitar": {
'description': "Isolates and transcribes only the low frequencies of a bassline.",
'onset_threshold': 0.4, 'frame_threshold': 0.3, 'minimum_note_length': 100,
'minimum_frequency': 30, 'maximum_frequency': 400,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': False
},
"Percussion / Drums": {
'description': "For drums and rhythmic elements. Catches fast, sharp hits.",
'onset_threshold': 0.7, 'frame_threshold': 0.6, 'minimum_note_length': 30,
'minimum_frequency': 40, 'maximum_frequency': 10000,
'infer_onsets': True, 'melodia_trick': False, 'multiple_bends': False
},
# --- Complex Genres ---
"Rock / Metal": {
'description': "Higher thresholds for distorted guitars, bass, and drums in a dense mix.",
'onset_threshold': 0.6, 'frame_threshold': 0.4, 'minimum_note_length': 100,
'minimum_frequency': 50, 'maximum_frequency': 3000,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Jazz (Multi-instrument)": {
'description': "High thresholds to separate notes in complex, improvisational passages.",
'onset_threshold': 0.7, 'frame_threshold': 0.5, 'minimum_note_length': 150,
'minimum_frequency': 55, 'maximum_frequency': 2000,
'infer_onsets': True, 'melodia_trick': False, 'multiple_bends': True
},
"Classical (Orchestral)": {
'description': "Longer note length to focus on sustained notes and filter out performance noise.",
'onset_threshold': 0.5, 'frame_threshold': 0.4, 'minimum_note_length': 200,
'minimum_frequency': 32, 'maximum_frequency': 4200,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Electronic / Synth": {
'description': "Low thresholds and short note length for sharp, synthetic sounds.",
'onset_threshold': 0.3, 'frame_threshold': 0.2, 'minimum_note_length': 50,
'minimum_frequency': 20, 'maximum_frequency': 8000,
'infer_onsets': True, 'melodia_trick': False, 'multiple_bends': False
}
}
# --- UI visibility logic now controls three components ---
def update_vocal_ui_visibility(separate_vocals):
"""Shows or hides the separation-related UI controls based on selections."""
is_visible = gr.update(visible=separate_vocals)
return is_visible, is_visible, is_visible
def update_ui_visibility(transcription_method, soundfont_choice):
"""
Dynamically updates the visibility of UI components based on user selections.
"""
is_general = (transcription_method == "General Purpose")
is_8bit = (soundfont_choice == SYNTH_8_BIT_LABEL)
return {
general_transcription_settings: gr.update(visible=is_general),
synth_8bit_settings: gr.update(visible=is_8bit),
}
# --- Function to control visibility of advanced MIDI rendering options ---
def update_advanced_midi_options_visibility(render_type_choice):
"""
Shows or hides the advanced MIDI rendering options based on the render type.
The options are only visible if the type is NOT 'Render as-is'.
"""
is_visible = (render_type_choice != "Render as-is")
return gr.update(visible=is_visible)
# --- UI controller function to update the description text ---
def update_render_type_description(render_type_choice):
"""
Returns the description for the selected render type.
"""
return RENDER_TYPE_DESCRIPTIONS.get(render_type_choice, "Select a render type to see its description.")
# --- Controller function to apply basic_pitch presets to the UI ---
def apply_basic_pitch_preset(preset_name):
if preset_name not in BASIC_PITCH_PRESETS:
# If "Custom" is selected or name is invalid, don't change anything
return {comp: gr.update() for comp in basic_pitch_ui_components}
settings = BASIC_PITCH_PRESETS[preset_name]
# Return a dictionary that maps each UI component to its new value
return {
onset_threshold: gr.update(value=settings['onset_threshold']),
frame_threshold: gr.update(value=settings['frame_threshold']),
minimum_note_length: gr.update(value=settings['minimum_note_length']),
minimum_frequency: gr.update(value=settings['minimum_frequency']),
maximum_frequency: gr.update(value=settings['maximum_frequency']),
infer_onsets: gr.update(value=settings['infer_onsets']),
melodia_trick: gr.update(value=settings['melodia_trick']),
multiple_pitch_bends: gr.update(value=settings['multiple_bends'])
}
# --- Function to apply 8-bit synthesizer presets ---
# --- This function must be defined before the UI components that use it ---
def apply_8bit_preset(preset_name):
"""
Takes the name of a preset and returns a dictionary of gr.update objects
to set the values of the 13 8-bit synthesizer control components.
This version is more robust as it directly maps keys to UI components.
"""
# If a special value is selected or the preset is not found, return empty updates for all controls.
if preset_name in ["Custom", "Auto-Recommend (Analyze MIDI)"] or preset_name not in S8BIT_PRESETS:
# We create a dictionary mapping each control component to an empty update.
s8bit_control_keys = [key for key in ALL_PARAM_KEYS if key.startswith('s8bit_') and key != 's8bit_preset_selector']
return {ui_component_map[key]: gr.update() for key in s8bit_control_keys}
# Get the settings dictionary for the chosen preset.
settings = S8BIT_PRESETS[preset_name]
updates = {}
# Iterate through the KEY-VALUE pairs in the chosen preset's settings.
for simple_key, value in settings.items():
# Reconstruct the full component key (e.g., 'waveform_type' -> 's8bit_waveform_type')
full_key = f"s8bit_{simple_key}"
# Check if this key corresponds to a valid UI component
if full_key in ui_component_map:
component = ui_component_map[full_key]
updates[component] = gr.update(value=value)
return updates
# --- UI Controller Function for Dynamic Visibility ---
def update_separation_mode_ui(is_advanced):
"""
Updates the visibility and labels of UI components based on whether
the advanced separation mode is enabled.
"""
if is_advanced:
# Advanced Mode: Show individual controls, label becomes "Other"
return {
advanced_separation_controls: gr.update(visible=True),
transcribe_drums: gr.update(visible=True),
transcribe_bass: gr.update(visible=True),
transcribe_other_or_accompaniment: gr.update(label="Transcribe Other"),
merge_drums_to_render: gr.update(visible=True),
merge_bass_to_render: gr.update(visible=True),
merge_other_or_accompaniment: gr.update(label="Merge Other")
}
else:
# Simple Mode: Hide individual controls, label becomes "Accompaniment"
return {
advanced_separation_controls: gr.update(visible=False),
transcribe_drums: gr.update(visible=False),
transcribe_bass: gr.update(visible=False),
transcribe_other_or_accompaniment: gr.update(label="Transcribe Accompaniment"),
merge_drums_to_render: gr.update(visible=False),
merge_bass_to_render: gr.update(visible=False),
merge_other_or_accompaniment: gr.update(label="Merge Accompaniment")
}
# --- UI controller for handling model selection ---
def on_separation_model_change(model_choice):
"""
Update the UI when the separation model changes.
If a 2-stem model (RoFormer) is selected, hide advanced (4-stem) controls.
"""
is_demucs = 'Demucs' in model_choice
# For 2-stem models, we force simple mode (is_advanced=False)
updates = update_separation_mode_ui(is_advanced=False)
# Also hide the checkbox that allows switching to advanced mode
updates[enable_advanced_separation] = gr.update(visible=is_demucs, value=False)
return updates
# --- Use the dataclass to define the master list of parameter keys ---
# This is now the single source of truth for parameter order.
ALL_PARAM_KEYS = [field.name for field in fields(AppParameters) if field.name not in ["input_file", "batch_input_files"]]
app = gr.Blocks(theme=gr.themes.Base())
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Audio-to-MIDI & Advanced Renderer</h1>")
gr.Markdown(
"**Upload a Audio for transcription-then-rendering, or a MIDI for rendering-only.**\n\n"
"This application combines piano audio transcription with a powerful MIDI transformation and rendering toolkit. "
"Based on the work of [asigalov61](https://github.com/asigalov61)."
)
# --- Use Tabs for different workflows ---
with gr.Tabs():
waveform_options = gr.WaveformOptions(show_recording_waveform=False)
# --- TAB 1: SINGLE FILE PROCESSING ---
with gr.TabItem("Single File Processing"):
# --- All of your existing UI components go inside this Tab ---
with gr.Row():
with gr.Column(scale=1):
# --- INPUT COLUMN ---
gr.Markdown("## 1. Upload File")
# Changed from gr.File to gr.Audio to allow for audio preview.
# type="filepath" ensures the component returns a string path to the uploaded file.
# The component will show a player for supported audio types (e.g., WAV, MP3).
input_file = gr.Audio(
label="Input Audio or MIDI File",
type="filepath",
sources=["upload"], waveform_options=waveform_options
)
# --- The single file processing button ---
submit_btn = gr.Button("Process and Render Single File", variant="primary")
with gr.Column(scale=2):
# --- OUTPUT COLUMN ---
gr.Markdown("### 2. Results")
output_midi_title = gr.Textbox(label="MIDI Title")
output_song_description = gr.Textbox(label="MIDI Description", lines=3)
output_audio = gr.Audio(label="Rendered Audio Output", format="wav", waveform_options=waveform_options)
output_plot = gr.Plot(label="MIDI Score Plot")
with gr.Row():
output_midi = gr.File(label="Download Processed MIDI File", file_types=[".mid"])
output_midi_md5 = gr.Textbox(label="Output MIDI MD5 Hash")
output_midi_summary = gr.Textbox(label="MIDI metadata summary", lines=4)
# --- TAB 2: BATCH PROCESSING ---
with gr.TabItem("Batch Processing"):
with gr.Row():
with gr.Column():
gr.Markdown("### 1. Upload Files")
gr.Markdown("Uses the **global settings** configured above.")
batch_input_files = gr.File(
label="Upload Audio or MIDI Files",
file_count="multiple"
)
batch_process_btn = gr.Button("Process Batch", variant="primary")
with gr.Column():
gr.Markdown("### 2. Download Results")
batch_output_audio_files = gr.File(
label="Download Rendered FLAC Files",
file_count="multiple",
interactive=False
)
batch_output_midi_files = gr.File(
label="Download Processed MIDI Files",
file_count="multiple",
interactive=False
)
# --- Global Settings Accordion, Define all settings in a global, shared accordion ---
with gr.Accordion("▶️ Configure Global Settings (for both Single File and Batch)", open=True):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Transcription Settings\n"
"> _**Note:** This entire section is for audio-to-MIDI conversion. All settings here are ignored if a MIDI file is uploaded._"
)
# --- Transcription Method Selector ---
transcription_method = gr.Radio(["General Purpose", "Piano-Specific"], label="Audio Transcription Method", value="General Purpose",
info="Choose 'General Purpose' for most music (vocals, etc.). Choose 'Piano-Specific' only for solo piano recordings.")
# --- Stereo Processing Checkbox ---
enable_stereo_processing = gr.Checkbox(label="Enable Stereo Transcription", value=False,
info="For stereo audio files only. When enabled, transcribes left and right channels independently, then merges them. Note: This will double the transcription time.")
# --- Vocal Separation Group ---
with gr.Group():
separate_vocals = gr.Checkbox(label="Enable Source Separation", value=False,
info="If checked, separates the audio into its component stems (vocals, drums, etc.) before processing.")
# --- Container for all separation options, visible only when enabled ---
with gr.Group(visible=False) as separation_options_box:
separation_model = gr.Radio(
["Demucs (4-stem)", "BS-RoFormer (Vocals/Instrumental)", "Mel-RoFormer (Vocals/Instrumental)"],
label="Separation Model",
value="Demucs (4-stem)",
info="Select the separation model. Demucs provides 4 stems (vocals, drums, bass, other). RoFormer models are specialized for 2-stem (vocals/instrumental) separation.",
)
gr.Markdown("#### 1. Stem Separation Options")
enable_advanced_separation = gr.Checkbox(label="Enable Advanced Stem Control (Demucs Only)", value=False,
info="If checked, you can individually control drums, bass, and other. If unchecked, they are treated as a single 'Accompaniment' track. This option is only available for the Demucs model.")
with gr.Row(visible=False) as advanced_separation_controls:
separate_drums = gr.Checkbox(label="Drums", value=True)
separate_bass = gr.Checkbox(label="Bass", value=True)
separate_other = gr.Checkbox(label="Other", value=True)
gr.Markdown("#### 2. Transcription Targets")
gr.Markdown("_Select which separated stem(s) to convert to MIDI._")
with gr.Row():
transcribe_vocals = gr.Checkbox(label="Transcribe Vocals", value=False)
# These two will be hidden/shown dynamically
transcribe_drums = gr.Checkbox(label="Transcribe Drums", value=False, visible=False)
transcribe_bass = gr.Checkbox(label="Transcribe Bass", value=False, visible=False)
# This checkbox will have its label changed dynamically
transcribe_other_or_accompaniment = gr.Checkbox(label="Transcribe Accompaniment", value=True)
gr.Markdown("#### 3. Audio Merging Targets")
gr.Markdown(
"""
_Select which **original, unprocessed** audio stems to merge back into the final output.
This does **not** use the transcribed MIDI; it uses the raw audio from the initial separation.
You can leave all boxes unchecked. This step only affects the final audio file, not the MIDI output._
"""
)
with gr.Row():
merge_vocals_to_render = gr.Checkbox(label="Merge Vocals", value=False)
# These two will be hidden/shown dynamically
merge_drums_to_render = gr.Checkbox(label="Merge Drums", value=False, visible=False)
merge_bass_to_render = gr.Checkbox(label="Merge Bass", value=False, visible=False)
# This checkbox will have its label changed dynamically
merge_other_or_accompaniment = gr.Checkbox(label="Merge Accompaniment", value=False)
with gr.Accordion("General Purpose Transcription Settings", open=True) as general_transcription_settings:
# --- Preset dropdown for basic_pitch ---
basic_pitch_preset_selector = gr.Dropdown(
choices=["Auto-Analyze Audio", "Custom"] + list(BASIC_PITCH_PRESETS.keys()),
value="Default (Balanced)",
label="Transcription Profile Preset",
info="Select a profile to auto-fill settings for different instrument types."
"For reference only; it is recommended to test and adjust for optimal results.")
# --- The existing basic_pitch components ---
onset_threshold = gr.Slider(
0.0, 1.0, value=0.5, step=0.05,
label="On-set Threshold",
info="Sensitivity for detecting the start of a new note. Lower values will detect more notes (even faint ones), but may create false positives. Higher values are stricter and cleaner, but might miss subtle notes."
)
frame_threshold = gr.Slider(
0.0, 1.0, value=0.3, step=0.05,
label="Frame Threshold",
info="Sensitivity for determining if a note is 'on' or 'off'. Lower values will sustain notes longer, but can merge distinct notes. Higher values create shorter, more separated notes, but might cut off tails."
)
minimum_note_length = gr.Slider(
10, 500, value=128, step=1,
label="Minimum Note Length (ms)",
info="Filters out notes shorter than this duration. Increase this to remove fast, noisy artifacts or clicks. Decrease it if the transcription is missing very short, staccato notes."
)
minimum_frequency = gr.Slider(
0, 500, value=60, step=5,
label="Minimum Frequency (Hz)",
info="Ignores any detected pitches below this frequency. Increase this to filter out low-frequency noise like rumble or hum. Set it just below your target instrument's lowest note (e.g., ~80Hz for guitar)."
)
maximum_frequency = gr.Slider(
501, 10000, value=4000, step=10,
label="Maximum Frequency (Hz)",
info="Ignores any detected pitches above this frequency. Decrease this to filter out high-frequency noise like hiss or cymbals. Set it just above your target instrument's highest note (e.g., ~1200Hz for vocals)."
)
infer_onsets = gr.Checkbox(
value=True,
label="Infer Onsets (Boost Onsets)",
info="When enabled, the model actively looks for and emphasizes the start of each note (the 'attack'). Recommended for percussive or clear, rhythmic music. Disable for very smooth, legato music like vocal pads."
)
melodia_trick = gr.Checkbox(
value=True,
label="Melodia Trick (Contour Optimization)",
info="When enabled, uses a secondary melody-detection algorithm to refine the main pitch contour. Highly recommended for most melodic content. Disable if you are transcribing non-melodic noise or complex polyphony."
)
multiple_pitch_bends = gr.Checkbox(
value=False,
label="Allow Multiple Pitch Bends",
info="When enabled, allows a single note to have multiple, continuous pitch bends within it. Essential for transcribing vocals, slides, or vibrato-heavy instruments. Disable for clean, discrete notes like a standard piano."
)
with gr.Column(scale=1):
# --- Rendering Settings ---
gr.Markdown("### MIDI Transformation & Rendering Settings")
render_type = gr.Radio(
list(RENDER_TYPE_DESCRIPTIONS.keys()), # Use keys from dict for choices
["Render as-is", "Custom render", "Extract melody", "Flip", "Reverse", "Repair Durations", "Repair Chords", "Remove Duplicate Pitches", "Longest Repeating Phrase", "Multi-Instrumental Summary", "Solo Piano Summary", "Add Drum Track"],
label="MIDI Transformation Render Type",
value="Render as-is",
info="Apply transformations to the MIDI before rendering. Select 'Render as-is' for basic rendering or other options for transformations.")
# --- A Markdown box for the dynamic descriptions ---
render_type_info = gr.Markdown(
value=RENDER_TYPE_DESCRIPTIONS["Render as-is"], # Set initial value
elem_classes="description-box" # Optional: for CSS styling
)
# --- SoundFont Bank with Preview Button ---
with gr.Row(elem_id="soundfont_selector_row"):
soundfont_bank = gr.Dropdown(
[SYNTH_8_BIT_LABEL] + list(soundfonts_dict.keys()),
label="SoundFont / Synthesizer",
value=list(soundfonts_dict.keys())[0] if soundfonts_dict else SYNTH_8_BIT_LABEL,
scale=4 # Give the dropdown more space
)
# The preview button, with a speaker icon for clarity.
preview_sf_button = gr.Button("🔊 Preview", scale=1)
# This audio player is dedicated to playing the preview clips.
# It's not interactive, as it's for output only.
preview_sf_player = gr.Audio(label="SoundFont Preview", interactive=False, show_label=False)
render_sample_rate = gr.Radio(
["16000", "32000", "44100"],
label="Audio Sample Rate",
value="44100")
with gr.Accordion("Advanced MIDI Rendering Options", open=False) as advanced_rendering_options:
render_with_sustains = gr.Checkbox(label="Apply sustain pedal effects (if present)", value=True,
info="Applies sustain pedal effects (CC64) to lengthen notes, creating a more realistic and connected performance, especially for piano.")
render_output_as_solo_piano = gr.Checkbox(label="Convert to Solo Piano (Grand Piano patch)", value=False,
info="Converts all non-drum instruments to a Grand Piano patch, creating a solo piano arrangement of the entire score.")
render_remove_drums = gr.Checkbox(label="Remove drum track", value=False,
info="Removes the entire drum track (typically MIDI Channel 9) from the score. Ideal for creating instrumental or karaoke versions.")
render_transpose_to_C4 = gr.Checkbox(label="Transpose entire score to center around C4", value=False,
info="Transposes the entire score so that its average pitch is centered around C4 (MIDI note 60). Useful for standardizing key.")
render_transpose_value = gr.Slider(-12, 12, value=0, step=1, label="Transpose (semitones)",
info="Shifts the pitch of all non-drum notes up (positive values) or down (negative values) by the specified number of semitones.")
custom_render_patch = gr.Slider(-1, 127, value=-1, step=1, label="Force MIDI Patch (-1 to disable)",
info="Forces all non-drum instruments to use a single specified MIDI patch number. Set to -1 to use the original instruments.")
merge_misaligned_notes = gr.Slider(-1, 127, value=-1, label="Time to merge notes in ms (-1 to disable)",
info="Aligns the start times of notes that are played almost simultaneously (within the specified ms threshold). Cleans up sloppy timing. -1 to disable.")
render_align = gr.Radio(
["Do not align", "Start Times", "Start Times and Durations", "Start Times and Split Durations"],
label="Align notes to musical bars",
value="Do not align",
info="Quantizes the score to a fixed bar length. 'Start Times' aligns onsets. "
"'Durations' trims notes at the bar line. 'Split Durations' splits notes that cross the bar line."
)
with gr.Column(scale=1):
# --- 8-bit Synthesizer Settings ---
#
# =================================================================================
# === 8-Bit Synthesizer Parameter Guide ===
# =================================================================================
#
# --- Basic Tone Shaping ---
#
# Waveform Type: The fundamental timbre of the sound.
# - Square: The classic, bright, somewhat hollow sound of the NES. Its tone is heavily modified by Pulse Width.
# - Sawtooth: Aggressive, buzzy, and rich. Great for intense leads or gritty basslines.
# - Triangle: Soft, pure, and flute-like. Often used for basslines or gentler melodies.
#
# Pulse Width (Square Wave Only): Modifies the character of the Square wave.
# - Low (near 0.1) or High (near 0.9): Creates a thin, sharp, or nasal sound. A common choice for classic leads.
# - Mid (near 0.5): A "perfect" square wave. The sound is full, round, and most robust.
#
# Envelope Type: Shapes the volume of each note over its duration.
# - Plucky (AD): Creates a percussive, short sound that attacks instantly and then fades. Ideal for fast melodies and arpeggios.
# - Sustained (Full Decay): Creates a held-out sound that lasts for the note's full duration. Ideal for pads and atmospheric sounds.
#
# Decay Time (s): Controls how long a note's sound lasts (in the Plucky envelope).
# - Low: Very short, staccato notes.
# - High: Longer, more resonant notes that can bleed into each other.
#
# Bass Boost Level: Mixes in a sub-octave (a square wave one octave lower).
# - Low (or 0): The pure, original waveform.
# - High: Adds significant weight, thickness, and power to the sound.
#
# --- Modulation & Performance ---
#
# Vibrato Rate (Hz): The SPEED of the pitch wobble.
# - Low: A slow, gentle wavering effect.
# - High (8Hz+): A fast, frantic buzzing or trembling effect. Can create "ring-mod" style sounds at extreme values.
#
# Vibrato Depth (Hz): The INTENSITY of the pitch wobble.
# - Low (or 0): A very subtle effect, or no vibrato at all.
# - High: An extreme, dramatic pitch bend. Can sound chaotic or like a siren at extreme values.
#
# Smooth Notes (Checkbox):
# - Enabled: Applies a tiny fade-in/out to reduce clicking artifacts. Makes the sound slightly softer but cleaner.
# - Disabled: More abrupt, harsh note onsets. Can be desirable for an aggressive sound.
#
# Continuous Vibrato (Checkbox):
# - Enabled: The vibrato is smooth and connected across a musical phrase, creating a "singing" or legato effect.
# - Disabled: The vibrato resets on each new note, creating a bouncy, per-note, staccato effect (key for the "Mario" style).
#
# --- FX & Advanced Synthesis ---
#
# Noise Level: Mixes in white noise with the main waveform.
# - Low (or 0): No noise.
# - High: Adds "air," "grit," or a "hissing" quality. Essential for simulating percussion or creating wind-like sound effects.
#
# Distortion Level: Applies a wave-shaping algorithm to make the sound harsher.
# - Low (or 0): The clean, original sound.
# - High: Progressively crushes and saturates the waveform, creating a very aggressive, "fuzzy" or "broken" tone.
#
# FM Depth (Frequency Modulation): Controls the intensity of the frequency modulation.
# - Low (or 0): No FM effect.
# - High: The main frequency is more heavily altered by the FM Rate, creating complex, bell-like, metallic, or dissonant tones.
#
# FM Rate (Frequency Modulation): Controls the speed of the modulating oscillator.
# - Low: Creates a slow, vibrato-like or "wobbling" FM effect.
# - High: Creates fast modulation, resulting in bright, complex, often metallic harmonics and sidebands.
# =================================================================================
#
# --- New option for auto-recommendation ---
# Define the 8-bit UI components in one place for easy reference
gr.Markdown("### 8-bit Synthesizer Settings")
with gr.Accordion("8-bit Synthesizer Settings", open=True, visible=False) as synth_8bit_settings:
s8bit_preset_selector = gr.Dropdown(
choices=["Custom", "Auto-Recommend (Analyze MIDI)"] + list(S8BIT_PRESETS.keys()),
value="Custom",
label="Style Preset",
info="Select a preset to auto-fill the settings below. Choose 'Custom' for manual control or 'Auto-Recommend' to analyze the MIDI.\nFor reference and entertainment only. These presets are not guaranteed to be perfectly accurate."
)
s8bit_waveform_type = gr.Dropdown(
['Square', 'Sawtooth', 'Triangle'],
value='Square',
label="Waveform Type",
info="The fundamental timbre of the sound. Square is bright and hollow (classic NES), Sawtooth is aggressive and buzzy, Triangle is soft and flute-like."
)
s8bit_pulse_width = gr.Slider(
0.01, 0.99, value=0.5, step=0.01,
label="Pulse Width (Square Wave Only)",
info="Changes the character of the Square wave. Low values (\~0.1) are thin and nasal, while mid values (\~0.5) are full and round."
)
s8bit_envelope_type = gr.Dropdown(
['Plucky (AD Envelope)', 'Sustained (Full Decay)'],
value='Plucky (AD Envelope)',
label="Envelope Type",
info="Shapes the volume of each note. 'Plucky' is a short, percussive sound. 'Sustained' holds the note for its full duration."
)
s8bit_decay_time_s = gr.Slider(
0.01, 1.0, value=0.1, step=0.01,
label="Decay Time (s)",
info="For the 'Plucky' envelope, this is the time it takes for a note to fade to silence. Low values are short and staccato; high values are longer and more resonant."
)
s8bit_adaptive_decay = gr.Checkbox(
value=True, # Default to True, as the effect is generally better.
label="Enable Adaptive Decay (Fix for Staccato)",
info="Recommended! Fixes low volume on fast/short notes by ensuring a consistent decay rate, regardless of note length. Makes staccato passages sound fuller and more powerful."
)
s8bit_vibrato_rate = gr.Slider(
0, 20, value=5,
label="Vibrato Rate (Hz)",
info="The SPEED of the pitch wobble. Low values create a slow, gentle waver. High values create a fast, frantic buzz."
)
s8bit_vibrato_depth = gr.Slider(
0, 50, value=0,
label="Vibrato Depth (Hz)",
info="The INTENSITY of the pitch wobble. Low values are subtle or off. High values create a dramatic, siren-like pitch bend."
)
s8bit_bass_boost_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Bass Boost Level",
info="Mixes in a sub-octave (a square wave one octave lower). Low values have no effect; high values add significant weight and power."
)
# UI control for Intelligent Bass Boost
s8bit_bass_boost_cutoff_hz = gr.Slider(
50.0, 500.0, value=200.0, step=10.0,
label="Bass Boost Cutoff (Hz)",
info="Intelligent Bass Boost: The boost effect will gradually fade out for notes BELOW this frequency, preventing muddiness in the low-end."
)
s8bit_smooth_notes_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Smooth Notes Level",
info="Applies a tiny fade-in/out to reduce clicking. Low values (or 0) give a hard, abrupt attack. High values give a softer, cleaner onset."
)
s8bit_continuous_vibrato_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Continuous Vibrato Level",
info="Controls vibrato continuity across notes. Low values (0) reset vibrato on each note (bouncy). High values (1) create a smooth, connected 'singing' vibrato."
)
# --- New accordion for advanced effects ---
with gr.Accordion("Advanced Synthesis & FX", open=True):
s8bit_noise_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Noise Level",
info="Mixes in white noise with the main waveform. Low values are clean; high values add 'grit', 'air', or a hissing quality, useful for percussion."
)
s8bit_distortion_level = gr.Slider(
0.0, 0.9, value=0.0, step=0.05,
label="Distortion Level",
info="Applies wave-shaping to make the sound harsher. Low values are clean; high values create a crushed, 'fuzzy', and aggressive tone."
)
s8bit_fm_modulation_depth = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="FM Depth",
info="Frequency Modulation intensity. At low values, there is no effect. At high values, it creates complex, metallic, or bell-like tones."
)
s8bit_fm_modulation_rate = gr.Slider(
0.0, 500.0, value=0.0, step=1.0,
label="FM Rate",
info="Frequency Modulation speed. Low values create a slow 'wobble'. High values create fast modulation, resulting in bright, dissonant harmonics."
)
# --- Echo Sustain Feature Block (Visually Grouped) ---
# This outer group ensures the checkbox and its settings are visually linked.
with gr.Group():
s8bit_echo_sustain = gr.Checkbox(
value=False, # Default to off as it's a special effect.
label="Enable Echo Sustain for Long Notes",
info="For 'Plucky' envelope only. Fills the silent tail of long, sustained notes with quiet, repeating pulses. Fixes 'choppy' sound on long piano notes."
)
# This inner group contains the sliders and is controlled by the checkbox above.
with gr.Group(visible=False) as echo_sustain_settings:
s8bit_echo_rate_hz = gr.Slider(
1.0, 20.0, value=5.0, step=0.5,
label="Echo Rate (Hz)",
info="How many echoes (pulses) per second. Higher values create a faster, 'tremolo'-like effect."
)
s8bit_echo_decay_factor = gr.Slider(
0.1, 0.95, value=0.45, step=0.05,
label="Echo Decay Factor",
info="How quickly the echoes fade. A value of 0.6 means each echo is 60% of the previous one's volume. Lower is faster."
)
s8bit_echo_trigger_threshold = gr.Slider(
1.1, 30.0, value=20, step=0.1,
label="Echo Trigger Threshold (x Decay Time)",
info="Controls how long a note must be to trigger echoes. This value is a multiplier of the 'Decay Time'. Example: If 'Decay Time' is 0.1s and this threshold is set to 10.0, only notes longer than 1.0s (0.1 * 10.0) will produce echoes."
)
# --- Re-architected into two separate, parallel accordions ---
# --- Section 1: Arpeggiator (Creative Tool) ---
with gr.Accordion("Arpeggiator (Creative Tool to Reduce Stiffness)", open=False):
s8bit_enable_arpeggiator = gr.Checkbox(
value=False,
label="Enable Arpeggiator (to reduce stiffness)",
info="Transforms chords into rapid sequences of notes, creating a classic, lively chiptune feel. This is a key technique to make 8-bit music sound more fluid."
)
with gr.Group(visible=False) as arpeggiator_settings_box:
s8bit_arpeggio_target = gr.Dropdown(
["Accompaniment Only", "Melody Only", "Full Mix"],
value="Accompaniment Only",
label="Arpeggiation Target",
info="""
- **Accompaniment Only (Classic):** Applies arpeggios only to the harmony/chord parts, leaving the lead melody untouched. The classic chiptune style.
- **Melody Only (Modern):** Applies arpeggios as a decorative effect to the lead melody notes, leaving the accompaniment as is. Creates a modern, expressive synth lead sound.
- **Full Mix:** Applies arpeggios to all non-drum tracks. Can create a very dense, complex texture.
"""
)
s8bit_arpeggio_velocity_scale = gr.Slider(
0.1, 1.5, value=0.3, step=0.05,
label="Arpeggio Velocity Scale",
info="A master volume control for the arpeggiator. 0.7 means arpeggiated notes will have 70% of the original chord's velocity."
)
s8bit_arpeggio_density = gr.Slider(
0.1, 1.0, value=0.4, step=0.05,
label="Arpeggio Density Scale",
info="Controls the density/sparseness of arpeggios. Lower values create more silence between notes, making long chords feel more relaxed."
)
s8bit_arpeggio_rhythm = gr.Dropdown(
[
"Continuous 16ths",
"Classic Upbeat (8th)",
"Pulsing 8ths",
"Triplet 8ths",
"Pulsing 4ths",
"Galloping",
"Simple Quarter Notes"
],
value="Pulsing 8ths",
label="Arpeggio Rhythm Pattern",
info="""
- **Continuous 16ths:** A constant, driving wall of sound with no breaks. Creates a very dense, high-energy texture. (Sounds like: ta-ta-ta-ta ta-ta-ta-ta)
- **Classic Upbeat (8th):** The quintessential chiptune rhythm. Creates a bouncy, syncopated feel by playing on the off-beats. (Sounds like: _ _ ta-ta _ _ ta-ta)
- **Pulsing 8ths:** A steady, on-beat rhythm playing two notes per beat. Good for a solid, rhythmic foundation. (Sounds like: ta-ta ta-ta)
- **Triplet 8ths:** A rolling, "three-feel" rhythm that creates a swing or shuffle groove. Very common in Blues, Jazz, and Hip-Hop. (Sounds like: ta-ta-ta ta-ta-ta)
- **Pulsing 4ths:** A strong, deliberate pulse on each downbeat, with a clear separation between notes. (Sounds like: ta_ ta_ ta_)
- **Galloping:** A driving, forward-moving rhythm with a distinctive long-short pattern. Excellent for action themes. (Sounds like: ta--ta ta--ta)
- **Simple Quarter Notes:** The most sparse pattern, playing one sustained note per beat. Creates a calm and open feel. (Sounds like: ta _ ta _ ta _ ta _)
"""
)
s8bit_arpeggio_pattern = gr.Dropdown(
["Up", "Down", "UpDown"],
value="Up",
label="Arpeggio Pattern",
info="""
- **Up:** The classic choice. Ascends from the lowest to the highest note of the chord, then jumps back to the bottom. Creates a feeling of energy, optimism, and forward momentum.
- **Down:** Descends from the highest to the lowest note. Often creates a more melancholic, reflective, or suspenseful mood.
- **UpDown:** Ascends to the highest note, then descends back down without jumping. This is the smoothest and most fluid pattern, creating a gentle, wave-like motion.
"""
)
s8bit_arpeggio_octave_range = gr.Slider(
1, 4, value=1, step=1,
label="Arpeggio Octave Range",
info="How many octaves the arpeggio pattern will span before repeating."
)
s8bit_arpeggio_panning = gr.Dropdown(
["Stereo", "Center", "Left", "Right"],
value="Stereo",
label="Arpeggio Layer Panning",
info="""
- **Stereo (Recommended):** Creates a wide, immersive sound by alternating arpeggio tracks between the left and right speakers. This provides maximum clarity and separation from the main melody.
- **Center:** Places the arpeggio directly in the middle (mono). Creates a focused, powerful, and retro sound, but may conflict with a centered lead melody.
- **Left / Right:** Places the entire arpeggio layer on only one side. Useful for creative "call and response" effects or special mixing choices.
"""
)
# --- Delay/Echo Sub-Section ---
with gr.Group():
s8bit_enable_delay = gr.Checkbox(
value=False,
label="Enable Delay / Echo Effect",
info="Adds repeating, decaying echoes to notes, creating a sense of space and rhythmic complexity."
)
with gr.Group(visible=False) as delay_settings_box:
s8bit_delay_on_melody_only = gr.Checkbox(
value=True,
label="Apply Delay to Melody Only",
info="Recommended. Applies the echo effect only to the lead melody notes, keeping the harmony clean."
)
s8bit_delay_division = gr.Dropdown(
["Quarter Note", "Dotted 8th Note", "8th Note", "Triplet 8th Note", "16th Note"],
value="Dotted 8th Note",
label="Delay Time (Tempo Synced)",
info="""
"The time between echoes, synced to the MIDI's tempo. 'Dotted 8th Note' is a classic rhythmic choice."
- **Quarter Note:** A simple, stable echo on the next beat. (1, 2, 3, 4)
- **Dotted 8th Note (Classic):** Creates a very popular, rolling syncopated rhythm. Highly recommended for adding energy and complexity.
- **8th Note:** A steady, "call and response" echo on the off-beat. Creates a running or swing feel.
- **Triplet 8th Note:** Creates a unique "shuffling" or "bouncing" 3-feel groove over the standard 4/4 beat.
- **16th Note:** A very fast, dense echo. Can act more like a textural effect than a distinct rhythmic delay.
"""
)
s8bit_delay_feedback = gr.Slider(
0.1, 0.9, value=0.5, step=0.05,
label="Delay Feedback (Volume Decay)",
info="Controls how much quieter each echo is. 0.5 means each echo is 50% the volume of the one before it."
)
s8bit_delay_repeats = gr.Slider(
1, 10, value=3, step=1,
label="Number of Repeats",
info="The total number of echoes to generate for each note."
)
# --- UI controls for low-end management ---
s8bit_delay_highpass_cutoff_hz = gr.Slider(
0, 500, value=100, step=10,
label="Echo High-Pass Filter (Hz)",
info="Filters out low frequencies from the echoes to prevent muddiness. Set to 0 to disable. 80-120Hz is a good range to clean up bass."
)
s8bit_delay_bass_pitch_shift = gr.Slider(
-12, 24, value=12, step=1,
label="Echo Pitch Shift for Low Notes (Semitones)",
info="Shifts the pitch of echoes for very low notes (below C3). +12 is one octave up, +7 is a perfect fifth. 0 to disable."
)
# --- UI controls for high-end management ---
s8bit_delay_lowpass_cutoff_hz = gr.Slider(
1000, 20000, value=5000, step=500,
label="Echo Low-Pass Filter (Hz)",
info="Filters out high frequencies from the echoes to reduce harshness. Set to 20000 to disable. 4k-8kHz is a good range to make echoes sound 'darker'."
)
s8bit_delay_treble_pitch_shift = gr.Slider(
-24, 12, value=-12, step=1,
label="Echo Pitch Shift for High Notes (Semitones)",
info="Shifts the pitch of echoes for very high notes (above C6). -12 is one octave down. 0 to disable."
)
# --- Section 2: MIDI Pre-processing (Corrective Tool) ---
with gr.Accordion("MIDI Pre-processing (Corrective Tool)", open=False):
s8bit_enable_midi_preprocessing = gr.Checkbox(
value=True,
label="Enable MIDI Pre-processing (Anti-Harshness)",
info="Intelligently reduces the velocity of notes that are likely to cause harshness (e.g., very high notes or loud, dense chords) before synthesis begins."
)
with gr.Group(visible=True) as midi_preprocessing_settings_box:
s8bit_high_pitch_threshold = gr.Slider(
60, 108, value=84, step=1,
label="High Pitch Threshold (MIDI Note)",
info="Notes above this pitch will have their velocity reduced. 84 = C6."
)
s8bit_high_pitch_velocity_scale = gr.Slider(
0.1, 1.0, value=0.8, step=0.05,
label="High Pitch Velocity Scale",
info="Multiplier for high notes' velocity (e.g., 0.8 = 80% of original velocity)."
)
# --- UI controls for low-pitch management ---
s8bit_low_pitch_threshold = gr.Slider(
21, 60, value=36, step=1,
label="Low Pitch Threshold (MIDI Note)",
info="Notes below this pitch will have their velocity reduced to prevent muddiness. 36 = C2."
)
s8bit_low_pitch_velocity_scale = gr.Slider(
0.1, 1.0, value=0.9, step=0.05,
label="Low Pitch Velocity Scale",
info="Multiplier for low notes' velocity. Use this to gently tame excessive sub-bass."
)
s8bit_chord_density_threshold = gr.Slider(
2, 10, value=4, step=1,
label="Chord Density Threshold",
info="Minimum number of notes to be considered a 'dense' chord."
)
s8bit_chord_velocity_threshold = gr.Slider(
50, 127, value=100, step=1,
label="Chord Velocity Threshold",
info="If a dense chord's average velocity is above this, it will be tamed."
)
s8bit_chord_velocity_scale = gr.Slider(
0.1, 1.0, value=0.75, step=0.05,
label="Chord Velocity Scale",
info="Velocity multiplier for loud, dense chords."
)
# --- Section 3: Audio Post-processing, accordion for Anti-Aliasing and Quality Settings ---
with gr.Accordion("Audio Quality & Anti-Aliasing (Post-processing)", open=False):
s8bit_enable_anti_aliasing = gr.Checkbox(
value=False,
label="Enable All Audio Quality Enhancements",
info="Master toggle for all settings below. Disabling may slightly speed up rendering but can result in harsher, more aliased sound."
)
with gr.Group(visible=False) as anti_aliasing_settings_box:
s8bit_use_additive_synthesis = gr.Checkbox(
value=False,
label="Use Additive Synthesis (High Quality, High CPU)",
info="Generates band-limited waveforms to drastically reduce aliasing (harshness). Slower to render but produces a much cleaner sound. Note: The other anti-aliasing settings below will still apply even if this is disabled."
)
s8bit_edge_smoothing_ms = gr.Slider(
0.0, 2.0, value=0.5, step=0.1,
label="Waveform Edge Smoothing (ms)",
info="Applies a tiny blur to the sharp edges of standard Square/Sawtooth waves to reduce aliasing. A cheap and effective alternative to Additive Synthesis."
)
s8bit_noise_lowpass_hz = gr.Slider(
1000, 20000, value=9000, step=500,
label="Noise Lowpass Filter (Hz)",
info="Applies a lowpass filter to the white noise, making it sound softer and less harsh. Lower values produce a 'darker' noise."
)
s8bit_harmonic_lowpass_factor = gr.Slider(
4.0, 32.0, value=12.0, step=0.5,
label="Harmonic Lowpass Factor",
info="Controls a dynamic lowpass filter. The cutoff frequency is (Note Frequency * this factor). Lower values create a darker, more muted sound."
)
s8bit_final_gain = gr.Slider(
0.1, 1.5, value=0.8, step=0.05,
label="Final Gain / Limiter Level",
info="A final volume adjustment before adding the sound to the mix. Values > 1.0 can introduce soft clipping (distortion)."
)
# Create a dictionary mapping key names to the actual Gradio components
ui_component_map = locals()
# Build the list of all setting components in the correct order using ALL_PARAM_KEYS
all_settings_components = [ui_component_map[key] for key in ALL_PARAM_KEYS]
# --- FIX START: Isolate the preset selector from the controls it updates ---
# Original list of all 14 synth components
s8bit_ui_keys = [key for key in ALL_PARAM_KEYS if key.startswith('s8bit_')]
s8bit_ui_components = [ui_component_map[key] for key in s8bit_ui_keys]
# NEW: Create a separate list containing only the 13 controls to be updated
s8bit_control_components = [comp for comp in s8bit_ui_components if comp != s8bit_preset_selector]
# The list of basic_pitch UI components that can be updated by its preset selector.
basic_pitch_keys = ['onset_threshold', 'frame_threshold', 'minimum_note_length', 'minimum_frequency', 'maximum_frequency',
'infer_onsets', 'melodia_trick', 'multiple_pitch_bends']
basic_pitch_ui_components = [ui_component_map[key] for key in basic_pitch_keys]
# Define inputs and outputs for Gradio events
single_file_inputs = [input_file] + all_settings_components
result_outputs = [output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot, output_song_description]
# The output list for the single file process now correctly includes all 14 synth components
single_file_outputs = result_outputs + s8bit_ui_components
batch_inputs = [batch_input_files] + all_settings_components
batch_outputs = [batch_output_audio_files, batch_output_midi_files]
# Event Handling for Single File Tab
submit_btn.click(
fn=process_and_render_file,
inputs=single_file_inputs,
outputs=single_file_outputs
)
# --- Event Handling for Batch Tab ---
batch_process_btn.click(
fn=batch_process_files,
inputs=batch_inputs,
outputs=batch_outputs
)
# Event listeners for UI visibility and presets
# When the main separation checkbox is toggled
separate_vocals.change(
fn=lambda x: gr.update(visible=x),
inputs=separate_vocals,
outputs=[separation_options_box]
)
# When the model selection changes, trigger UI update
separation_model.change(
fn=on_separation_model_change,
inputs=separation_model,
outputs=[
enable_advanced_separation,
advanced_separation_controls,
transcribe_drums,
transcribe_bass,
transcribe_other_or_accompaniment,
merge_drums_to_render,
merge_bass_to_render,
merge_other_or_accompaniment
]
)
# When the advanced stem control checkbox is toggled, update all related UI parts
enable_advanced_separation.change(
fn=update_separation_mode_ui,
inputs=enable_advanced_separation,
outputs=[
advanced_separation_controls,
transcribe_drums,
transcribe_bass,
transcribe_other_or_accompaniment,
merge_drums_to_render,
merge_bass_to_render,
merge_other_or_accompaniment
]
)
# --- Listeners for dynamic UI updates ---
transcription_method.change(
fn=lambda x: gr.update(visible=(x == "General Purpose")),
inputs=transcription_method,
outputs=general_transcription_settings
)
soundfont_bank.change(
fn=lambda x: gr.update(visible=(x == SYNTH_8_BIT_LABEL)),
inputs=soundfont_bank,
outputs=synth_8bit_settings
)
# --- Event listener for the new basic_pitch preset dropdown ---
basic_pitch_preset_selector.change(
fn=apply_basic_pitch_preset,
inputs=basic_pitch_preset_selector,
outputs=basic_pitch_ui_components
)
# --- Event listener for the 8-bit preset selector ---
s8bit_preset_selector.change(
fn=apply_8bit_preset,
inputs=s8bit_preset_selector,
outputs=s8bit_control_components
)
# --- New event listener for the render_type radio button ---
# This listener now has TWO outputs
render_type.change(
fn=update_advanced_midi_options_visibility,
inputs=render_type,
outputs=advanced_rendering_options
).then( # Chain another event to the same trigger
fn=update_render_type_description,
inputs=render_type,
outputs=render_type_info
)
# --- New event listener for the Echo Sustain UI ---
s8bit_echo_sustain.change(
fn=lambda x: gr.update(visible=x), # A simple lambda function to update visibility.
inputs=s8bit_echo_sustain,
outputs=echo_sustain_settings
)
# --- Event listener for the unified sound source preview button ---
preview_sf_button.click(
fn=preview_sound_source,
inputs=[soundfont_bank] + all_settings_components,
outputs=[preview_sf_player]
)
# Event listener for the new Anti-Aliasing settings box
s8bit_enable_anti_aliasing.change(
fn=lambda x: gr.update(visible=x),
inputs=s8bit_enable_anti_aliasing,
outputs=anti_aliasing_settings_box
)
# Event listener for the new MIDI Pre-processing settings box
s8bit_enable_midi_preprocessing.change(
fn=lambda x: gr.update(visible=x),
inputs=s8bit_enable_midi_preprocessing,
outputs=midi_preprocessing_settings_box
)
# Event listener for the new Arpeggiator settings box
s8bit_enable_arpeggiator.change(
fn=lambda x: gr.update(visible=x),
inputs=s8bit_enable_arpeggiator,
outputs=arpeggiator_settings_box
)
# Event listener for the new Delay/Echo settings box
s8bit_enable_delay.change(
fn=lambda x: gr.update(visible=x),
inputs=s8bit_enable_delay,
outputs=delay_settings_box
)
# Launch the Gradio app
app.queue().launch(inbrowser=True, debug=True)