File size: 136,997 Bytes
2923df9 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f 4299f7c adcbc9f 26312c5 4299f7c b934418 cd46d93 adcbc9f b934418 cd46d93 adcbc9f b114cd4 b934418 adcbc9f b934418 adcbc9f cd46d93 adcbc9f 53409b8 2923df9 951967e 4543735 adcbc9f b780647 d80a2c7 b114cd4 b780647 adcbc9f 2923df9 3888ab7 d80a2c7 3888ab7 22dd15a adcbc9f 22dd15a adcbc9f b114cd4 adcbc9f d80a2c7 adcbc9f b114cd4 adcbc9f d80a2c7 adcbc9f 80ab93c b114cd4 58195d3 adcbc9f b114cd4 2923df9 b114cd4 e835c5f b114cd4 e835c5f b114cd4 adcbc9f e835c5f adcbc9f e835c5f adcbc9f e835c5f 58195d3 d80a2c7 58195d3 d80a2c7 58195d3 d80a2c7 58195d3 d80a2c7 58195d3 e835c5f 58195d3 e835c5f 58195d3 adcbc9f d80a2c7 e835c5f 58195d3 e835c5f 80ab93c d80a2c7 80ab93c e835c5f 80ab93c d80a2c7 80ab93c 58195d3 d80a2c7 e835c5f d80a2c7 58195d3 d80a2c7 e835c5f adcbc9f e835c5f d80a2c7 58195d3 d80a2c7 e835c5f adcbc9f 58195d3 adcbc9f 58195d3 d80a2c7 58195d3 e835c5f 80ab93c adcbc9f b114cd4 adcbc9f e835c5f b114cd4 e835c5f b114cd4 2923df9 b114cd4 2923df9 b114cd4 2923df9 b114cd4 2923df9 b114cd4 adcbc9f b114cd4 adcbc9f 5cb75be adcbc9f 2923df9 adcbc9f b114cd4 adcbc9f d80a2c7 adcbc9f 80ab93c adcbc9f 2923df9 adcbc9f e94f552 adcbc9f d80a2c7 adcbc9f 29090fa adcbc9f 6df655f d80a2c7 adcbc9f 8d39a27 4543735 adcbc9f 2a2c4ee 660b28d adcbc9f 1424ad3 adcbc9f fe6e100 d80a2c7 adcbc9f 4543735 2967e03 adcbc9f b101711 d80a2c7 b101711 2fd537d adcbc9f d80a2c7 adcbc9f 8ea7c59 b114cd4 adcbc9f 4543735 4d34e84 b114cd4 6df655f abb25f7 cf7d19c 4d34e84 8d39a27 adcbc9f 410f581 6df655f adcbc9f d80a2c7 7485e9b ffdd828 d80a2c7 736f5d9 d80a2c7 24957f5 d80a2c7 c0f9cf2 d80a2c7 1b6bdce d57ab6a d80a2c7 c0f9cf2 d80a2c7 884a083 8efd5f1 f2bdfe6 884a083 a967a4d adcbc9f 8d39a27 6df655f adcbc9f d80a2c7 adcbc9f d80a2c7 adcbc9f d80a2c7 adcbc9f d80a2c7 8b3de7f d80a2c7 adcbc9f b114cd4 d80a2c7 d46a61a 9ed302a adcbc9f d80a2c7 d46a61a 9ed302a d80a2c7 d46a61a 9ed302a 4299f7c d80a2c7 4801166 74f5b97 adcbc9f 406db87 74f5b97 adcbc9f 406db87 7a7d25f adcbc9f d80a2c7 cf187c8 adcbc9f 9a96351 74f5b97 9a96351 adcbc9f 9a96351 adcbc9f cf187c8 d80a2c7 adcbc9f d80a2c7 1424ad3 adcbc9f d80a2c7 e94f552 adcbc9f 9a96351 adcbc9f 9a96351 8d69657 9a96351 598a5c4 adcbc9f 67e09bb adcbc9f d80a2c7 adcbc9f 57440b4 adcbc9f f7f27b0 adcbc9f d80a2c7 f7f27b0 adcbc9f d80a2c7 adcbc9f e835c5f d80a2c7 b114cd4 adcbc9f b114cd4 adcbc9f f7f27b0 d80a2c7 adcbc9f d80a2c7 adcbc9f d80a2c7 3858291 adcbc9f fd58682 b114cd4 adcbc9f 2a2c4ee adcbc9f 6df655f 91d5e8a adcbc9f fd58682 8a1f411 b114cd4 adcbc9f 58195d3 2923df9 58195d3 adcbc9f 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 7339550 adcbc9f d80a2c7 7339550 adcbc9f 7339550 d80a2c7 adcbc9f d80a2c7 7339550 d80a2c7 22dd15a 2923df9 adcbc9f 7339550 d80a2c7 5cb75be adcbc9f 2923df9 d80a2c7 7339550 2923df9 22dd15a 2923df9 22dd15a 2923df9 22dd15a 7339550 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 b114cd4 22dd15a d80a2c7 2923df9 d80a2c7 2923df9 7339550 d80a2c7 2923df9 7339550 22dd15a 2923df9 22dd15a 2923df9 d80a2c7 2923df9 22dd15a 2923df9 22dd15a 2923df9 22dd15a 2923df9 d80a2c7 2923df9 d80a2c7 22dd15a 2923df9 d80a2c7 2923df9 7339550 d80a2c7 2923df9 d80a2c7 2923df9 7339550 d80a2c7 2923df9 7339550 d80a2c7 2923df9 7339550 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 b114cd4 2923df9 d80a2c7 2923df9 7339550 58195d3 d80a2c7 7339550 58195d3 d80a2c7 58195d3 d80a2c7 58195d3 d80a2c7 7339550 adcbc9f d80a2c7 7339550 d80a2c7 7339550 22dd15a d80a2c7 22dd15a d80a2c7 22dd15a d80a2c7 22dd15a d80a2c7 22dd15a d80a2c7 22dd15a d80a2c7 22dd15a d80a2c7 22dd15a d80a2c7 7339550 d80a2c7 1309ddb d80a2c7 58195d3 d80a2c7 7339550 d80a2c7 7339550 d80a2c7 7339550 d80a2c7 58195d3 d80a2c7 7339550 d80a2c7 7339550 d80a2c7 7339550 d80a2c7 7339550 d80a2c7 7339550 d80a2c7 58195d3 d80a2c7 58195d3 d80a2c7 adcbc9f 3888ab7 adcbc9f 800d0d0 adcbc9f d80a2c7 adcbc9f 800d0d0 adcbc9f 22dd15a d80a2c7 58195d3 e835c5f 22dd15a 58195d3 e835c5f 58195d3 e835c5f 22dd15a 58195d3 22dd15a 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 22dd15a 58195d3 22dd15a 58195d3 e835c5f 22dd15a 58195d3 22dd15a 58195d3 22dd15a 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 22dd15a 58195d3 22dd15a 58195d3 22dd15a 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 22dd15a d80a2c7 22dd15a e835c5f 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 58195d3 e835c5f 22dd15a e835c5f 58195d3 e835c5f 3888ab7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 22dd15a d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 2923df9 d80a2c7 22dd15a adcbc9f 58195d3 3888ab7 adcbc9f 80ab93c adcbc9f 22dd15a d80a2c7 adcbc9f d80a2c7 adcbc9f d80a2c7 e835c5f d80a2c7 adcbc9f d80a2c7 5cb75be d80a2c7 5cb75be d80a2c7 adcbc9f d80a2c7 2923df9 d80a2c7 e835c5f d80a2c7 58195d3 d80a2c7 adcbc9f d80a2c7 adcbc9f 2923df9 d80a2c7 22dd15a d80a2c7 2923df9 22dd15a d85cb0d adcbc9f d80a2c7 adcbc9f d80a2c7 adcbc9f d80a2c7 2923df9 d80a2c7 2923df9 e835c5f d80a2c7 e835c5f d80a2c7 e835c5f 2923df9 d80a2c7 adcbc9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 |
# =================================================================
#
# Merged and Integrated Script for Audio/MIDI Processing and Rendering (Stereo Enhanced)
#
# This script combines two functionalities:
# 1. Transcribing audio to MIDI using two methods:
# a) A general-purpose model (basic-pitch by Spotify).
# b) A model specialized for solo piano (ByteDance).
# - Includes stereo processing by splitting channels, transcribing independently, and merging MIDI.
# 2. Applying advanced transformations and re-rendering MIDI files using:
# a) Standard SoundFonts via FluidSynth (produces stereo audio).
# b) A custom 8-bit style synthesizer for a chiptune sound (updated for stereo output).
#
# The user can upload a Audio (e.g., WAV, MP3), or MIDI file.
# - If an audio file is uploaded, it is first transcribed to MIDI using the selected method.
# - The resulting MIDI (or an uploaded MIDI) can then be processed
# with various effects and rendered into audio.
#
#================================================================
# Original sources:
# https://huggingface.co/spaces/asigalov61/ByteDance-Solo-Piano-Audio-to-MIDI-Transcription
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Renderer
#================================================================
# Packages:
#
# sudo apt install fluidsynth
#
# =================================================================
# Requirements:
#
# pip install gradio torch pytz numpy scipy matplotlib networkx scikit-learn
# pip install piano_transcription_inference huggingface_hub
# pip install basic-pitch pretty_midi librosa soundfile
#
# =================================================================
# Core modules:
#
# git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#
# =================================================================
import io
import os
import hashlib
import time as reqtime
import copy
import shutil
import librosa
import pyloudnorm as pyln
import soundfile as sf
import torch
import ffmpeg
import gradio as gr
from dataclasses import dataclass, fields # ADDED for the parameter object
# --- Imports for Vocal Separation ---
import torchaudio
from demucs.apply import apply_model
from demucs.pretrained import get_model
from demucs.audio import convert_audio
from src.piano_transcription.utils import initialize_app
from piano_transcription_inference import PianoTranscription, utilities, sample_rate as transcription_sample_rate
# --- Import core transcription and MIDI processing libraries ---
from src import TMIDIX, TPLOTS
from src import MIDI
from src.midi_to_colab_audio import midi_to_colab_audio
# --- Imports for General Purpose Transcription (basic-pitch) ---
import basic_pitch
from basic_pitch.inference import predict
from basic_pitch import ICASSP_2022_MODEL_PATH
# --- Imports for 8-bit Synthesizer & MIDI Merging ---
import pretty_midi
import numpy as np
from scipy import signal
# =================================================================================================
# === Hugging Face SoundFont Downloader ===
# =================================================================================================
from huggingface_hub import hf_hub_download
import glob
# --- Define a constant for the 8-bit synthesizer option ---
SYNTH_8_BIT_LABEL = "None (8-bit Synthesizer)"
# =================================================================================================
# === NEW: Central Parameter Object ===
# =================================================================================================
@dataclass
class AppParameters:
"""A dataclass to hold all configurable parameters for the application."""
# This provides type safety and autocomplete, preventing typos from string keys.
# Input files (not part of the settings panel)
input_file: str = None
batch_input_files: list = None
# Global Settings
s8bit_preset_selector: str = "Custom"
separate_vocals: bool = False
remerge_vocals: bool = False
transcription_target: str = "Transcribe Music (Accompaniment)"
transcribe_both_stems: bool = False
enable_stereo_processing: bool = False
transcription_method: str = "General Purpose"
# Basic Pitch Settings
onset_threshold: float = 0.5
frame_threshold: float = 0.3
minimum_note_length: int = 128
minimum_frequency: float = 60.0
maximum_frequency: float = 4000.0
infer_onsets: bool = True
melodia_trick: bool = True
multiple_pitch_bends: bool = False
# Render Settings
render_type: str = "Render as-is"
soundfont_bank: str = "None (8-bit Synthesizer)"
render_sample_rate: str = "44100"
render_with_sustains: bool = True
merge_misaligned_notes: int = -1
custom_render_patch: int = -1
render_align: str = "Do not align"
render_transpose_value: int = 0
render_transpose_to_C4: bool = False
render_output_as_solo_piano: bool = False
render_remove_drums: bool = False
# 8-bit Synthesizer Settings
s8bit_waveform_type: str = 'Square'
s8bit_pulse_width: float = 0.5
s8bit_envelope_type: str = 'Plucky (AD Envelope)'
s8bit_decay_time_s: float = 0.1
s8bit_vibrato_rate: float = 5.0
s8bit_vibrato_depth: float = 0.0
s8bit_bass_boost_level: float = 0.0
s8bit_smooth_notes_level: float = 0.0
s8bit_continuous_vibrato_level: float = 0.0
s8bit_noise_level: float = 0.0
s8bit_distortion_level: float = 0.0
s8bit_fm_modulation_depth: float = 0.0
s8bit_fm_modulation_rate: float = 0.0
# =================================================================================================
# === Helper Functions ===
# =================================================================================================
def prepare_soundfonts():
"""
Ensures a default set of SoundFonts are downloaded, then scans the 'src/sf2'
directory recursively for all .sf2 files.
Returns a dictionary mapping a user-friendly name to its full file path, with
default soundfonts listed first in their specified order.
Downloads soundfont files from the specified Hugging Face Space repository
to a local 'src/sf2' directory if they don't already exist.
Returns a list of local paths to the soundfont files.
"""
SF2_REPO_ID = "asigalov61/Advanced-MIDI-Renderer"
SF2_DIR = "src/sf2"
# This list is now just for ensuring default files exist
# {"Super GM": 0, "Orpheus GM": 1, "Live HQ GM": 2, "Nice Strings + Orchestra": 3, "Real Choir": 4, "Super Game Boy": 5, "Proto Square": 6}
DEFAULT_SF2_FILENAMES = [
"SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
"Orpheus_18.06.2020.sf2",
"Live HQ Natural SoundFont GM.sf2",
"Nice-Strings-PlusOrchestra-v1.6.sf2",
"KBH-Real-Choir-V2.5.sf2",
"SuperGameBoy.sf2",
"ProtoSquare.sf2"
]
# Create the target directory if it doesn't exist
os.makedirs(SF2_DIR, exist_ok=True)
# --- Step 1: Ensure default SoundFonts are available ---
print("Checking for SoundFont files...")
for filename in DEFAULT_SF2_FILENAMES:
local_path = os.path.join(SF2_DIR, filename)
# Check if the file already exists locally to avoid re-downloading
if not os.path.exists(local_path):
print(f"Downloading '{filename}' from Hugging Face Hub...")
try:
# Use hf_hub_download to get the file
# It will be downloaded to the specified local directory
hf_hub_download(
repo_id=SF2_REPO_ID,
repo_type='space', # Specify that the repository is a Space
filename=f"{filename}", # The path to the file within the repository
local_dir=SF2_DIR,
# local_dir_use_symlinks=False # Copy file to the dir for a clean folder structure
)
print(f"'{filename}' downloaded successfully.")
except Exception as e:
print(f"Error downloading {filename}: {e}")
# If download fails, we might not be able to use this soundfont
# --- Step 2: Scan the entire directory for all .sf2 files ---
print(f"Scanning '{SF2_DIR}' for all .sf2 files...")
all_sfs_map = {}
# Use glob with recursive=True to find all .sf2 files in subdirectories
search_pattern = os.path.join(SF2_DIR, '**', '*.sf2')
for full_path in glob.glob(search_pattern, recursive=True):
# Create a user-friendly display name, including subfolder if it exists
relative_path = os.path.relpath(full_path, SF2_DIR)
display_name = os.path.splitext(relative_path)[0].replace("\\", "/") # Use forward slashes for consistency
all_sfs_map[display_name] = full_path
# --- Step 3: Create the final ordered dictionary based on priority ---
ordered_soundfont_map = {}
# Create display names for default files (filename without extension)
default_display_names = [os.path.splitext(f)[0] for f in DEFAULT_SF2_FILENAMES]
# Separate other files from the default ones
other_display_names = [name for name in all_sfs_map.keys() if name not in default_display_names]
other_display_names.sort() # Sort the rest alphabetically
# Add default soundfonts first, maintaining the order from DEFAULT_SF2_FILENAMES
for name in default_display_names:
if name in all_sfs_map: # Check if the file was actually found by the scanner
ordered_soundfont_map[name] = all_sfs_map[name]
# Add all other soundfonts after the default ones
for name in other_display_names:
ordered_soundfont_map[name] = all_sfs_map[name]
return ordered_soundfont_map
# =================================================================================================
# === 8-bit Style Synthesizer (Stereo Enabled) ===
# =================================================================================================
def synthesize_8bit_style(*, midi_data: pretty_midi.PrettyMIDI, fs: int, params: AppParameters):
"""
Synthesizes an 8-bit style audio waveform from a PrettyMIDI object.
This function generates waveforms manually instead of using a synthesizer like FluidSynth.
Includes an optional sub-octave bass booster with adjustable level.
Instruments are panned based on their order in the MIDI file.
Instrument 1 -> Left, Instrument 2 -> Right.
Now supports graded levels for smoothing and vibrato continuity.
"""
total_duration = midi_data.get_end_time()
# Initialize a stereo waveform buffer (2 channels: Left, Right)
waveform = np.zeros((2, int(total_duration * fs) + fs))
num_instruments = len(midi_data.instruments)
# Phase tracking: main oscillator phase for each instrument
osc_phase = {}
# Vibrato phase tracking
vibrato_phase = 0.0
for i, instrument in enumerate(midi_data.instruments):
# --- Panning Logic ---
# Default to center-panned mono
pan_l, pan_r = 0.707, 0.707
if num_instruments == 2:
if i == 0: # First instrument panned left
pan_l, pan_r = 1.0, 0.0
elif i == 1: # Second instrument panned right
pan_l, pan_r = 0.0, 1.0
elif num_instruments > 2:
if i == 0: # Left
pan_l, pan_r = 1.0, 0.0
elif i == 1: # Right
pan_l, pan_r = 0.0, 1.0
# Other instruments remain centered
osc_phase[i] = 0.0 # Independent phase tracking for each instrument
for note in instrument.notes:
freq = pretty_midi.note_number_to_hz(note.pitch)
note_duration = note.end - note.start
num_samples = int(note_duration * fs)
if num_samples <= 0:
continue
t = np.arange(num_samples) / fs
# --- Graded Continuous Vibrato ---
# This now interpolates between a fully reset vibrato and a fully continuous one.
# Use accumulated phase to avoid vibrato reset per note
vib_phase_inc = 2 * np.pi * params.s8bit_vibrato_rate / fs
per_note_vib_phase = 2 * np.pi * params.s8bit_vibrato_rate * t
continuous_vib_phase = vibrato_phase + np.arange(num_samples) * vib_phase_inc
# Weighted average of the two phase types
final_vib_phase = (
per_note_vib_phase * (1 - params.s8bit_continuous_vibrato_level) +
continuous_vib_phase * params.s8bit_continuous_vibrato_level
)
vibrato_lfo = params.s8bit_vibrato_depth * np.sin(final_vib_phase)
# Update the global vibrato phase for the next note
if num_samples > 0:
vibrato_phase = (continuous_vib_phase[-1] + vib_phase_inc) % (2 * np.pi)
# --- Waveform Generation with FM ---
fm_lfo = params.s8bit_fm_modulation_depth * np.sin(2 * np.pi * params.s8bit_fm_modulation_rate * t)
modulated_freq = freq * (1 + fm_lfo)
# --- Waveform Generation (Main Oscillator with phase continuity) ---
phase_inc = 2 * np.pi * (modulated_freq + vibrato_lfo) / fs
phase = osc_phase[i] + np.cumsum(phase_inc)
if num_samples > 0:
osc_phase[i] = phase[-1] % (2 * np.pi) # Store last phase
if params.s8bit_waveform_type == 'Square':
note_waveform = signal.square(phase, duty=params.s8bit_pulse_width)
elif params.s8bit_waveform_type == 'Sawtooth':
note_waveform = signal.sawtooth(phase)
else: # Triangle
note_waveform = signal.sawtooth(phase, width=0.5)
# --- Bass Boost (Sub-Octave Oscillator) ---
if params.s8bit_bass_boost_level > 0:
bass_freq = freq / 2.0
# Only add bass if the frequency is reasonably audible
if bass_freq > 20:
# Bass uses a simple square wave, no vibrato, for stability
bass_phase_inc = 2 * np.pi * bass_freq / fs
bass_phase = np.cumsum(np.full(num_samples, bass_phase_inc))
bass_sub_waveform = signal.square(bass_phase, duty=0.5)
# Mix the main and bass waveforms.
# As bass level increases, slightly decrease main waveform volume to prevent clipping.
main_level = 1.0 - (0.5 * params.s8bit_bass_boost_level)
note_waveform = (note_waveform * main_level) + (bass_sub_waveform * params.s8bit_bass_boost_level)
# --- Noise & Distortion Simulation (White Noise) ---
if params.s8bit_noise_level > 0:
note_waveform += np.random.uniform(-1, 1, num_samples) * params.s8bit_noise_level
# --- Distortion (Wave Shaping) ---
if params.s8bit_distortion_level > 0:
# Using a tanh function for a smoother, "warmer" distortion
note_waveform = np.tanh(note_waveform * (1 + params.s8bit_distortion_level * 5))
# --- ADSR Envelope ---
start_amp = note.velocity / 127.0
envelope = np.zeros(num_samples)
if params.s8bit_envelope_type == 'Plucky (AD Envelope)':
attack_samples = min(int(0.005 * fs), num_samples)
decay_samples = min(int(params.s8bit_decay_time_s * fs), num_samples - attack_samples)
envelope[:attack_samples] = np.linspace(0, start_amp, attack_samples)
if decay_samples > 0:
envelope[attack_samples:attack_samples+decay_samples] = np.linspace(start_amp, 0, decay_samples)
else: # Sustained
envelope = np.linspace(start_amp, 0, num_samples)
# --- Graded Note Smoothing ---
# The level controls the length of the fade in/out. Max fade is 10ms.
if params.s8bit_smooth_notes_level > 0 and num_samples > 10:
fade_length = int(fs * 0.01 * params.s8bit_smooth_notes_level)
fade_samples = min(fade_length, num_samples // 2)
if fade_samples > 0:
envelope[:fade_samples] *= np.linspace(0.5, 1.0, fade_samples)
envelope[-fade_samples:] *= np.linspace(1.0, 0.0, fade_samples)
# Apply envelope to the (potentially combined) waveform
note_waveform *= envelope
start_sample = int(note.start * fs)
end_sample = start_sample + num_samples
if end_sample > waveform.shape[1]:
end_sample = waveform.shape[1]
note_waveform = note_waveform[:end_sample-start_sample]
# Add the mono note waveform to the stereo buffer with panning
waveform[0, start_sample:end_sample] += note_waveform * pan_l
waveform[1, start_sample:end_sample] += note_waveform * pan_r
return waveform # Returns a (2, N) numpy array
def analyze_midi_velocity(midi_path):
midi = pretty_midi.PrettyMIDI(midi_path)
all_velocities = []
print(f"Analyzing velocity for MIDI: {midi_path}")
for i, instrument in enumerate(midi.instruments):
velocities = [note.velocity for note in instrument.notes]
all_velocities.extend(velocities)
if velocities:
print(f"Instrument {i} ({instrument.name}):")
print(f" Notes count: {len(velocities)}")
print(f" Velocity min: {min(velocities)}")
print(f" Velocity max: {max(velocities)}")
print(f" Velocity mean: {np.mean(velocities):.2f}")
else:
print(f"Instrument {i} ({instrument.name}): no notes found.")
if all_velocities:
print("\nOverall MIDI velocity stats:")
print(f" Total notes: {len(all_velocities)}")
print(f" Velocity min: {min(all_velocities)}")
print(f" Velocity max: {max(all_velocities)}")
print(f" Velocity mean: {np.mean(all_velocities):.2f}")
else:
print("No notes found in this MIDI.")
def scale_instrument_velocity(instrument, scale=0.8):
for note in instrument.notes:
note.velocity = max(1, min(127, int(note.velocity * scale)))
def normalize_loudness(audio_data, sample_rate, target_lufs=-23.0):
"""
Normalizes the audio data to a target integrated loudness (LUFS).
This provides more consistent perceived volume than peak normalization.
Args:
audio_data (np.ndarray): The audio signal.
sample_rate (int): The sample rate of the audio.
target_lufs (float): The target loudness in LUFS. Defaults to -23.0,
a common standard for broadcast.
Returns:
np.ndarray: The loudness-normalized audio data.
"""
try:
# 1. Measure the integrated loudness of the input audio
meter = pyln.Meter(sample_rate) # create meter
loudness = meter.integrated_loudness(audio_data)
# 2. Calculate the gain needed to reach the target loudness
# The gain is applied in the linear domain, so we convert from dB
loudness_gain_db = target_lufs - loudness
loudness_gain_linear = 10.0 ** (loudness_gain_db / 20.0)
# 3. Apply the gain
normalized_audio = audio_data * loudness_gain_linear
# 4. Final safety check: peak normalize to prevent clipping, just in case
# the loudness normalization results in peaks > 1.0
peak_val = np.max(np.abs(normalized_audio))
if peak_val > 1.0:
normalized_audio /= peak_val
print(f"Warning: Loudness normalization resulted in clipping. Audio was peak-normalized as a safeguard.")
print(f"Audio normalized from {loudness:.2f} LUFS to target {target_lufs} LUFS.")
return normalized_audio
except Exception as e:
print(f"Loudness normalization failed: {e}. Falling back to original audio.")
return audio_data
# =================================================================================================
# === MIDI Merging Function ===
# =================================================================================================
def merge_midis(midi_path_left, midi_path_right, output_path):
"""
Merges two MIDI files into a single MIDI file. This robust version iterates
through ALL instruments in both MIDI files, ensuring no data is lost if the
source files are multi-instrumental.
It applies hard-left panning (Pan=0) to every instrument from the left MIDI
and hard-right panning (Pan=127) to every instrument from the right MIDI.
"""
try:
analyze_midi_velocity(midi_path_left)
analyze_midi_velocity(midi_path_right)
midi_left = pretty_midi.PrettyMIDI(midi_path_left)
midi_right = pretty_midi.PrettyMIDI(midi_path_right)
merged_midi = pretty_midi.PrettyMIDI()
# --- Process ALL instruments from the left channel MIDI ---
if midi_left.instruments:
print(f"Found {len(midi_left.instruments)} instrument(s) in the left channel MIDI.")
# Use a loop to iterate through every instrument
for instrument in midi_left.instruments:
scale_instrument_velocity(instrument, scale=0.8)
# To avoid confusion, we can prefix the instrument name
instrument.name = f"Left - {instrument.name if instrument.name else 'Instrument'}"
# Create and add the Pan Left control change
# Create a Control Change event for Pan (controller number 10).
# Set its value to 0 for hard left panning.
# Add it at the very beginning of the track (time=0.0).
pan_left = pretty_midi.ControlChange(number=10, value=0, time=0.0)
# Use insert() to ensure the pan event is the very first one
instrument.control_changes.insert(0, pan_left)
# Append the fully processed instrument to the merged MIDI
merged_midi.instruments.append(instrument)
# --- Process ALL instruments from the right channel MIDI ---
if midi_right.instruments:
print(f"Found {len(midi_right.instruments)} instrument(s) in the right channel MIDI.")
# Use a loop here as well
for instrument in midi_right.instruments:
scale_instrument_velocity(instrument, scale=0.8)
instrument.name = f"Right - {instrument.name if instrument.name else 'Instrument'}"
# Create and add the Pan Right control change
# Create a Control Change event for Pan (controller number 10).
# Set its value to 127 for hard right panning.
# Add it at the very beginning of the track (time=0.0).
pan_right = pretty_midi.ControlChange(number=10, value=127, time=0.0)
instrument.control_changes.insert(0, pan_right)
merged_midi.instruments.append(instrument)
merged_midi.write(output_path)
print(f"Successfully merged all instruments and panned into '{os.path.basename(output_path)}'")
analyze_midi_velocity(output_path)
return output_path
except Exception as e:
print(f"Error merging MIDI files: {e}")
# Fallback logic remains the same
if os.path.exists(midi_path_left):
print("Fallback: Using only the left channel MIDI.")
return midi_path_left
return None
def is_stereo_midi(midi_path: str) -> bool:
"""
Checks if a MIDI file contains the specific stereo panning control changes
(hard left and hard right) created by the merge_midis function.
Args:
midi_path (str): The file path to the MIDI file.
Returns:
bool: True if both hard-left (0) and hard-right (127) pan controls are found, False otherwise.
"""
try:
midi_data = pretty_midi.PrettyMIDI(midi_path)
found_left_pan = False
found_right_pan = False
for instrument in midi_data.instruments:
for control_change in instrument.control_changes:
# MIDI Controller Number 10 is for Panning.
if control_change.number == 10:
if control_change.value == 0:
found_left_pan = True
elif control_change.value == 127:
found_right_pan = True
# Optimization: If we've already found both, no need to check further.
if found_left_pan and found_right_pan:
return True
return found_left_pan and found_right_pan
except Exception as e:
# If the MIDI file is invalid or another error occurs, assume it's not our special stereo format.
print(f"Could not analyze MIDI for stereo info: {e}")
return False
# =================================================================================================
# === Stage 1: Audio to MIDI Transcription Functions ===
# =================================================================================================
def TranscribePianoAudio(input_file):
"""
Transcribes a WAV or MP3 audio file of a SOLO PIANO performance into a MIDI file.
This uses the ByteDance model.
Args:
input_file_path (str): The path to the input audio file.
Returns:
str: The file path of the generated MIDI file.
"""
print('=' * 70)
print('STAGE 1: Starting Piano-Specific Transcription')
print('=' * 70)
# Generate a unique output filename for the MIDI
fn = os.path.basename(input_file)
fn1 = fn.split('.')[0]
# Use os.path.join to create a platform-independent directory path
output_dir = os.path.join("output", "transcribed_piano_")
out_mid_path = os.path.join(output_dir, fn1 + '.mid')
# Check for the directory's existence and create it if necessary
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('-' * 70)
print(f'Input file name: {fn}')
print(f'Output MIDI path: {out_mid_path}')
print('-' * 70)
# Load audio using the utility function
print('Loading audio...')
(audio, _) = utilities.load_audio(input_file, sr=transcription_sample_rate, mono=True)
print('Audio loaded successfully.')
print('-' * 70)
# Initialize the transcription model
# Use 'cuda' if a GPU is available and configured, otherwise 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Loading transcriptor model... device= {device}')
transcriptor = PianoTranscription(device=device, checkpoint_path="src/models/CRNN_note_F1=0.9677_pedal_F1=0.9186.pth")
print('Transcriptor loaded.')
print('-' * 70)
# Perform transcription
print('Transcribing audio to MIDI (Piano-Specific)...')
# This function call saves the MIDI file to the specified path
transcriptor.transcribe(audio, out_mid_path)
print('Piano transcription complete.')
print('=' * 70)
# Return the path to the newly created MIDI file
return out_mid_path
def TranscribeGeneralAudio(input_file, onset_threshold, frame_threshold, minimum_note_length, minimum_frequency, maximum_frequency, infer_onsets, melodia_trick, multiple_bends):
"""
Transcribes a general audio file into a MIDI file using basic-pitch.
This is suitable for various instruments and vocals.
"""
print('=' * 70)
print('STAGE 1: Starting General Purpose Transcription')
print('=' * 70)
fn = os.path.basename(input_file)
fn1 = fn.split('.')[0]
output_dir = os.path.join("output", "transcribed_general_")
out_mid_path = os.path.join(output_dir, fn1 + '.mid')
os.makedirs(output_dir, exist_ok=True)
print(f'Input file: {fn}\nOutput MIDI: {out_mid_path}')
# --- Perform transcription using basic-pitch ---
print('Transcribing audio to MIDI (General Purpose)...')
# The predict function handles audio loading internally
model_output, midi_data, note_events = basic_pitch.inference.predict(
audio_path=input_file,
model_or_model_path=ICASSP_2022_MODEL_PATH,
onset_threshold=onset_threshold,
frame_threshold=frame_threshold,
minimum_note_length=minimum_note_length,
minimum_frequency=minimum_frequency,
maximum_frequency=maximum_frequency,
infer_onsets=infer_onsets,
melodia_trick=melodia_trick,
multiple_pitch_bends=multiple_bends
)
# --- Save the MIDI file ---
midi_data.write(out_mid_path)
print('General transcription complete.')
print('=' * 70)
return out_mid_path
# =================================================================================================
# === Stage 2: MIDI Transformation and Rendering Function ===
# =================================================================================================
def Render_MIDI(*, input_midi_path: str, params: AppParameters):
"""
Processes and renders a MIDI file according to user-defined settings.
Can render using SoundFonts or a custom 8-bit synthesizer.
Args:
input_midi_path (str): The path to the input MIDI file.
All other arguments are rendering options from the Gradio UI.
Returns:
A tuple containing all the output elements for the Gradio UI.
"""
print('*' * 70)
print('STAGE 2: Starting MIDI Rendering')
print('*' * 70)
# --- File and Settings Setup ---
fn = os.path.basename(input_midi_path)
fn1 = fn.split('.')[0]
# Use os.path.join to create a platform-independent directory path
output_dir = os.path.join("output", "rendered_midi")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Now, join the clean directory path with the filename
new_fn_path = os.path.join(output_dir, fn1 + '_rendered.mid')
try:
with open(input_midi_path, 'rb') as f:
fdata = f.read()
input_midi_md5hash = hashlib.md5(fdata).hexdigest()
except FileNotFoundError:
# Handle cases where the input file might not exist
print(f"Error: Input MIDI file not found at {input_midi_path}")
return [None] * 7 # Return empty values for all outputs
print('=' * 70)
print('Requested settings:')
print(f'Input MIDI file name: {fn}')
print(f'Input MIDI md5 hash: {input_midi_md5hash}')
print('-' * 70)
print(f"Render type: {params.render_type}")
print(f"Soundfont bank: {params.soundfont_bank}")
print(f"Audio render sample rate: {params.render_sample_rate}")
# ... (add other print statements for settings if needed)
print('=' * 70)
# --- MIDI Processing using TMIDIX ---
print('Processing MIDI... Please wait...')
raw_score = MIDI.midi2single_track_ms_score(fdata)
# call the function and store the returned list in a variable.
processed_scores = TMIDIX.advanced_score_processor(raw_score,
return_enhanced_score_notes=True,
apply_sustain=params.render_with_sustains)
# check if the returned list is empty. This happens when transcription finds no notes.
# This check prevents the 'IndexError: list index out of range'.
if not processed_scores:
# If it is empty, print a warning and return a user-friendly error message.
print("Warning: MIDI file contains no processable notes.")
# The number of returned values must match the function's expected output.
# We return a tuple with empty or placeholder values for all 7 output components.
return ("N/A", fn1, "MIDI file contains no notes.", None, None, None, "No notes found.")
# If the list is not empty, it is now safe to get the first element.
escore = processed_scores[0]
# Handle cases where the MIDI might not contain any notes
if not escore:
print("Warning: MIDI file contains no processable notes.")
return ("N/A", fn1, "MIDI file contains no notes.",None, None, None, "No notes found.")
# This line will now work correctly because merge_misaligned_notes is guaranteed to be an integer.
if params.merge_misaligned_notes > 0:
escore = TMIDIX.merge_escore_notes(escore, merge_threshold=params.merge_misaligned_notes)
escore = TMIDIX.augment_enhanced_score_notes(escore, timings_divider=1)
first_note_index = [e[0] for e in raw_score[1]].index('note')
cscore = TMIDIX.chordify_score([1000, escore])
meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]
aux_escore_notes = TMIDIX.augment_enhanced_score_notes(escore, sort_drums_last=True)
song_description = TMIDIX.escore_notes_to_text_description(aux_escore_notes)
print('Done!')
print('=' * 70)
print('Input MIDI metadata:', meta_data[:5])
print('=' * 70)
print('Input MIDI song description:', song_description)
print('=' * 70)
print('Processing...Please wait...')
# A deep copy of the score to be modified
output_score = copy.deepcopy(escore)
# Apply transformations based on render_type
if params.render_type == "Extract melody":
output_score = TMIDIX.add_melody_to_enhanced_score_notes(escore, return_melody=True)
output_score = TMIDIX.recalculate_score_timings(output_score)
elif params.render_type == "Flip":
output_score = TMIDIX.flip_enhanced_score_notes(escore)
elif params.render_type == "Reverse":
output_score = TMIDIX.reverse_enhanced_score_notes(escore)
elif params.render_type == 'Repair Durations':
output_score = TMIDIX.fix_escore_notes_durations(escore, min_notes_gap=0)
elif params.render_type == 'Repair Chords':
fixed_cscore = TMIDIX.advanced_check_and_fix_chords_in_chordified_score(cscore)[0]
output_score = TMIDIX.flatten(fixed_cscore)
elif params.render_type == 'Remove Duplicate Pitches':
output_score = TMIDIX.remove_duplicate_pitches_from_escore_notes(escore)
elif params.render_type == "Add Drum Track":
nd_escore = [e for e in escore if e[3] != 9]
nd_escore = TMIDIX.augment_enhanced_score_notes(nd_escore)
output_score = TMIDIX.advanced_add_drums_to_escore_notes(nd_escore)
for e in output_score:
e[1] *= 16
e[2] *= 16
print('MIDI processing complete.')
print('=' * 70)
# --- Final Processing and Patching ---
if params.render_type != "Render as-is":
print('Applying final adjustments (transpose, align, patch)...')
if params.custom_render_patch != -1: # -1 indicates no change
for e in output_score:
if e[3] != 9: # not a drum channel
e[6] = params.custom_render_patch
if params.render_transpose_value != 0:
output_score = TMIDIX.transpose_escore_notes(output_score, params.render_transpose_value)
if params.render_transpose_to_C4:
output_score = TMIDIX.transpose_escore_notes_to_pitch(output_score, 60) # C4 is MIDI pitch 60
if params.render_align == "Start Times":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score)
elif params.render_align == "Start Times and Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, trim_durations=True)
elif params.render_align == "Start Times and Split Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, split_durations=True)
if params.render_type == "Longest Repeating Phrase":
zscore = TMIDIX.recalculate_score_timings(output_score)
lrno_score = TMIDIX.escore_notes_lrno_pattern_fast(zscore)
if lrno_score is not None:
output_score = lrno_score
else:
output_score = TMIDIX.recalculate_score_timings(TMIDIX.escore_notes_middle(output_score, 50))
if params.render_type == "Multi-Instrumental Summary":
zscore = TMIDIX.recalculate_score_timings(output_score)
c_escore_notes = TMIDIX.compress_patches_in_escore_notes_chords(zscore)
if len(c_escore_notes) > 128:
cmatrix = TMIDIX.escore_notes_to_image_matrix(c_escore_notes, filter_out_zero_rows=True, filter_out_duplicate_rows=True)
smatrix = TPLOTS.square_image_matrix(cmatrix, num_pca_components=max(1, min(5, len(c_escore_notes) // 128)))
output_score = TMIDIX.image_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 250
o[2] *= 250
if params.render_output_as_solo_piano:
output_score = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=(not params.render_remove_drums))
if params.render_remove_drums and not params.render_output_as_solo_piano:
output_score = TMIDIX.strip_drums_from_escore_notes(output_score)
if params.render_type == "Solo Piano Summary":
sp_escore_notes = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=False)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
if len(zscore) > 128:
bmatrix = TMIDIX.escore_notes_to_binary_matrix(zscore)
cmatrix = TMIDIX.compress_binary_matrix(bmatrix, only_compress_zeros=True)
smatrix = TPLOTS.square_binary_matrix(cmatrix, interpolation_order=max(1, min(5, len(zscore) // 128)))
output_score = TMIDIX.binary_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 200
o[2] *= 200
print('Final adjustments complete.')
print('=' * 70)
# --- Saving Processed MIDI File ---
# Save the transformed MIDI data
SONG, patches, _ = TMIDIX.patch_enhanced_score_notes(output_score)
# The underlying function mistakenly adds a '.mid' extension.
# We must pass the path without the extension to compensate.
path_without_ext = new_fn_path.rsplit('.mid', 1)[0]
MIDI.Tegridy_ms_SONG_to_MIDI_Converter(SONG,
output_signature = 'Integrated-MIDI-Processor',
output_file_name = path_without_ext,
track_name='Processed Track',
list_of_MIDI_patches=patches
)
midi_to_render_path = new_fn_path
else:
# If "Render as-is", use the original MIDI data
with open(new_fn_path, 'wb') as f:
f.write(fdata)
midi_to_render_path = new_fn_path
# --- Audio Rendering ---
print('Rendering final audio...')
# Select sample rate
srate = int(params.render_sample_rate)
# --- Conditional Rendering Logic ---
if params.soundfont_bank == SYNTH_8_BIT_LABEL:
print("Using 8-bit style synthesizer...")
try:
# Load the MIDI file with pretty_midi for manual synthesis
midi_data_for_synth = pretty_midi.PrettyMIDI(midi_to_render_path)
# Synthesize the waveform
# --- Passing new FX parameters to the synthesis function ---
audio = synthesize_8bit_style(midi_data=midi_data_for_synth, fs=srate, params=params)
# Normalize and prepare for Gradio
peak_val = np.max(np.abs(audio))
if peak_val > 0:
audio /= peak_val
# Transpose from (2, N) to (N, 2) and convert to int16 for Gradio
audio_out = (audio.T * 32767).astype(np.int16)
except Exception as e:
print(f"Error during 8-bit synthesis: {e}")
return [None] * 7
else:
print(f"Using SoundFont: {params.soundfont_bank}")
# Get the full path from the global dictionary
soundfont_path = soundfonts_dict.get(params.soundfont_bank)
# Select soundfont
if not soundfont_path or not os.path.exists(soundfont_path):
# If the selected soundfont is not found, inform the user directly via the UI.
raise gr.Error(f"SoundFont file '{params.soundfont_bank}' could not be found. Please check your 'src/sf2' directory or select another SoundFont.")
# # Error handling in case the selected file is not found
# error_msg = f"SoundFont '{params.soundfont_bank}' not found!"
# print(f"ERROR: {error_msg}")
# # Fallback to the first available soundfont if possible
# if soundfonts_dict:
# fallback_key = list(soundfonts_dict.keys())[0]
# soundfont_path = soundfonts_dict[fallback_key]
# print(f"Falling back to '{fallback_key}'.")
# else:
# # If no soundfonts are available at all, raise an error
# raise gr.Error("No SoundFonts are available for rendering!")
with open(midi_to_render_path, 'rb') as f:
midi_file_content = f.read()
audio_out = midi_to_colab_audio(midi_file_content,
soundfont_path=soundfont_path, # Use the dynamically found path
sample_rate=srate,
output_for_gradio=True
)
print('Audio rendering complete.')
print('=' * 70)
# --- Preparing Outputs for Gradio ---
with open(midi_to_render_path, 'rb') as f:
new_md5_hash = hashlib.md5(f.read()).hexdigest()
output_plot = TPLOTS.plot_ms_SONG(output_score, plot_title=f"Score of {fn1}", return_plt=True)
output_midi_summary = str(meta_data)
return new_md5_hash, fn1, output_midi_summary, midi_to_render_path, (srate, audio_out), output_plot, song_description
def analyze_midi_features(midi_data):
"""
Analyzes a PrettyMIDI object to extract musical features for parameter recommendation.
Args:
midi_data (pretty_midi.PrettyMIDI): The MIDI data to analyze.
Returns:
dict or None: A dictionary containing features, or None if the MIDI is empty.
Features: 'note_count', 'instruments_count', 'duration',
'note_density', 'avg_velocity', 'pitch_range'.
"""
all_notes = [note for instrument in midi_data.instruments for note in instrument.notes]
note_count = len(all_notes)
# Return None if the MIDI file has no notes to analyze.
if note_count == 0:
return None
duration = midi_data.get_end_time()
# Avoid division by zero for empty-duration MIDI files.
if duration == 0:
note_density = 0
else:
note_density = note_count / duration
# --- Calculate new required features ---
avg_velocity = sum(note.velocity for note in all_notes) / note_count
avg_pitch = sum(note.pitch for note in all_notes) / note_count
avg_note_length = sum(note.end - note.start for note in all_notes) / note_count
# Calculate pitch range
if note_count > 1:
min_pitch = min(note.pitch for note in all_notes)
max_pitch = max(note.pitch for note in all_notes)
pitch_range = max_pitch - min_pitch
else:
pitch_range = 0
return {
'note_count': note_count,
'instruments_count': len(midi_data.instruments),
'duration': duration,
'note_density': note_density, # Notes per second
'avg_velocity': avg_velocity,
'pitch_range': pitch_range, # In semitones
'avg_pitch': avg_pitch,
'avg_note_length': avg_note_length,
}
def determine_waveform_type(features):
"""
Determines the best waveform type based on analyzed MIDI features.
- Square: Best for most general-purpose, bright melodies.
- Sawtooth: Best for intense, heavy, or powerful leads and basses.
- Triangle: Best for soft, gentle basses or flute-like sounds.
Args:
features (dict): The dictionary of features from analyze_midi_features.
Returns:
str: The recommended waveform type ('Square', 'Sawtooth', or 'Triangle').
"""
# 1. Check for conditions that strongly suggest a Triangle wave (soft bassline)
# MIDI Pitch 52 is ~G#3. If the average pitch is below this, it's likely a bass part.
# If notes are long and the pitch range is narrow, it confirms a simple, melodic bassline.
if features['avg_pitch'] <= 52 and features['avg_note_length'] >= 0.3 and features['pitch_range'] < 12:
return "Triangle"
# 2. Check for conditions that suggest a Sawtooth wave (intense/complex part)
# High note density or a very wide pitch range often indicates an aggressive lead or a complex solo.
# The sawtooth's rich harmonics are perfect for this.
if features['note_density'] >= 6 or features['pitch_range'] >= 18:
return "Sawtooth"
# 3. Default to the most versatile waveform: Square
return "Square"
def recommend_8bit_params(midi_data, default_preset):
"""
Recommends 8-bit synthesizer parameters using a unified, factor-based model.
This "AI" generates a sound profile based on normalized musical features.
Args:
midi_data (pretty_midi.PrettyMIDI): The MIDI data to analyze.
default_preset (dict): A fallback preset if analysis fails.
Returns:
dict: A dictionary of recommended synthesizer parameters.
"""
features = analyze_midi_features(midi_data)
if features is None:
# Return a default preset if MIDI is empty or cannot be analyzed
return default_preset
# --- Rule-based Parameter Recommendation ---
params = {}
# --- 1. Core Timbre Selection ---
# Intelligent Waveform Selection
params['waveform_type'] = determine_waveform_type(features)
# Determine pulse width *after* knowing the waveform.
# This only applies if the waveform is Square.
if params['waveform_type'] == 'Square':
# For Square waves, use pitch complexity to decide pulse width.
# Complex melodies get a thinner sound (0.3) for clarity.
# Simpler melodies get a fuller sound (0.5).
params['pulse_width'] = 0.3 if features['pitch_range'] > 30 else 0.5
else:
# For Sawtooth or Triangle, pulse width is not applicable. Set a default.
params['pulse_width'] = 0.5
# --- 2. Envelope and Rhythm ---
# Determine envelope type based on note density
is_plucky = features['note_density'] > 10
params['envelope_type'] = 'Plucky (AD Envelope)' if is_plucky else 'Sustained (Full Decay)'
params['decay_time_s'] = 0.15 if is_plucky else 0.4
# --- 3. Modulation (Vibrato) ---
# Vibrato depth and rate based on velocity and density
params['vibrato_depth'] = min(max((features['avg_velocity'] - 60) / 20, 0), 10) # More velocity = more depth
if features['note_density'] > 12:
params['vibrato_rate'] = 7.0 # Very fast music -> frantic vibrato
elif features['note_density'] > 6:
params['vibrato_rate'] = 5.0 # Moderately fast music -> standard vibrato
else:
params['vibrato_rate'] = 3.0 # Slow music -> gentle vibrato
# --- 4. Progressive/Graded Parameters using Normalization ---
# Smooth notes level (0.0 to 1.0): More smoothing for denser passages.
# Effective range: 3 to 8 notes/sec.
params['smooth_notes_level'] = min(max((features['note_density'] - 3) / 5.0, 0.0), 1.0) # Smoothen notes in denser passages
# Continuous vibrato level (0.0 to 1.0): Less dense passages get more lyrical, continuous vibrato.
# Effective range: 5 to 10 notes/sec. (Inverted)
params['continuous_vibrato_level'] = 1.0 - min(max((features['note_density'] - 5) / 5.0, 0.0), 1.0) # Lyrical (less dense) music gets connected vibrato
# Noise level (0.0 to 0.1): Higher velocity passages get more "air" or "grit".
# Effective range: velocity 50 to 90.
params['noise_level'] = min(max((features['avg_velocity'] - 50) / 40.0, 0.0), 1.0) * 0.1
# Distortion level (0.0 to 0.1): Shorter notes get more distortion for punch.
# Effective range: note length 0.5s down to 0.25s. (Inverted)
if features['avg_note_length'] < 0.25: # Short, staccato notes
params['distortion_level'] = 0.1
elif features['avg_note_length'] < 0.5: # Medium length notes
params['distortion_level'] = 0.05
else: # Long, sustained notes
params['distortion_level'] = 0.0
# Progressive FM modulation based on a combined complexity factor.
# Normalizes note density and pitch range to a 0-1 scale.
density_factor = min(max((features['note_density'] - 5) / 15, 0), 1) # Effective range 5-20 notes/sec
range_factor = min(max((features['pitch_range'] - 15) / 30, 0), 1) # Effective range 15-45 semitones
# The overall complexity is the average of these two factors.
complexity_factor = (density_factor + range_factor) / 2
params['fm_modulation_depth'] = round(0.3 * complexity_factor, 3)
params['fm_modulation_rate'] = round(200 * complexity_factor, 1)
# Non-linear bass boost
# REFINED LOGIC: Non-linear bass boost based on instrument count.
# More instruments lead to less bass boost to avoid a muddy mix,
# while solo or duo arrangements get a significant boost to sound fuller.
# The boost level has a floor of 0.2 and a ceiling of 1.0.
params['bass_boost_level'] = max(0.2, 1.0 - (features['instruments_count'] - 1) * 0.15)
# Round all float values for cleaner output
for key, value in params.items():
if isinstance(value, float):
params[key] = round(value, 3)
return params
# =================================================================================================
# === Main Application Logic ===
# =================================================================================================
# --- Helper function to encapsulate the transcription pipeline for a single audio file ---
def _transcribe_stem(audio_path: str, base_name: str, temp_dir: str, params: AppParameters):
"""
Takes a single audio file path and runs the full transcription pipeline on it.
This includes stereo/mono handling and normalization.
Returns the file path of the resulting transcribed MIDI.
"""
print(f"\n--- Transcribing Stem: {os.path.basename(audio_path)} ---")
# Load the audio stem to process it
audio_data, native_sample_rate = librosa.load(audio_path, sr=None, mono=False)
if params.enable_stereo_processing and audio_data.ndim == 2 and audio_data.shape[0] == 2:
print("Stereo processing enabled for stem.")
left_channel_np = audio_data[0]
right_channel_np = audio_data[1]
normalized_left = normalize_loudness(left_channel_np, native_sample_rate)
normalized_right = normalize_loudness(right_channel_np, native_sample_rate)
temp_left_path = os.path.join(temp_dir, f"{base_name}_left.flac")
temp_right_path = os.path.join(temp_dir, f"{base_name}_right.flac")
sf.write(temp_left_path, normalized_left, native_sample_rate)
sf.write(temp_right_path, normalized_right, native_sample_rate)
print(f"Saved left channel to: {temp_left_path}")
print(f"Saved right channel to: {temp_right_path}")
print("Transcribing left and right channel...")
if params.transcription_method == "General Purpose":
midi_path_left = TranscribeGeneralAudio(temp_left_path, params.onset_threshold, params.frame_threshold, params.minimum_note_length, params.minimum_frequency, params.maximum_frequency, params.infer_onsets, params.melodia_trick, params.multiple_pitch_bends)
midi_path_right = TranscribeGeneralAudio(temp_right_path, params.onset_threshold, params.frame_threshold, params.minimum_note_length, params.minimum_frequency, params.maximum_frequency, params.infer_onsets, params.melodia_trick, params.multiple_pitch_bends)
else: # Piano-Specific
midi_path_left = TranscribePianoAudio(temp_left_path)
midi_path_right = TranscribePianoAudio(temp_right_path)
if midi_path_left and midi_path_right:
merged_midi_path = os.path.join(temp_dir, f"{base_name}_merged.mid")
return merge_midis(midi_path_left, midi_path_right, merged_midi_path)
elif midi_path_left:
print("Warning: Right channel transcription failed. Using left channel only.")
return midi_path_left
elif midi_path_right:
print("Warning: Left channel transcription failed. Using right channel only.")
return midi_path_right
else:
print(f"Warning: Stereo transcription failed for stem {base_name}.")
return None
else:
print("Mono processing for stem.")
mono_signal_np = np.mean(audio_data, axis=0) if audio_data.ndim > 1 else audio_data
normalized_mono = normalize_loudness(mono_signal_np, native_sample_rate)
temp_mono_path = os.path.join(temp_dir, f"{base_name}_mono.flac")
sf.write(temp_mono_path, normalized_mono, native_sample_rate)
if params.transcription_method == "General Purpose":
return TranscribeGeneralAudio(temp_mono_path, params.onset_threshold, params.frame_threshold, params.minimum_note_length, params.minimum_frequency, params.maximum_frequency, params.infer_onsets, params.melodia_trick, params.multiple_pitch_bends)
else:
return TranscribePianoAudio(temp_mono_path)
# --- The core processing engine for a single file ---
def run_single_file_pipeline(input_file_path: str, timestamp: str, params: AppParameters, progress: gr.Progress = None):
"""
This is the main processing engine. It takes a file path and a dictionary of all settings,
and performs the full pipeline: load, separate, transcribe, render, re-merge.
It is UI-agnostic and returns file paths and data, not Gradio updates.
It now accepts a Gradio Progress object to report granular progress.
"""
# Helper function to safely update progress
def update_progress(fraction, desc):
if progress:
progress(fraction, desc=desc)
# --- Start timer for this specific file ---
file_start_time = reqtime.time()
filename = os.path.basename(input_file_path)
base_name = os.path.splitext(filename)[0]
# --- Determine file type to select the correct progress timeline ---
is_midi_input = filename.lower().endswith(('.mid', '.midi', '.kar'))
update_progress(0, f"Starting: {filename}")
print(f"\n{'='*20} Starting Pipeline for: {filename} {'='*20}")
# --- Use the provided timestamp for unique filenames ---
timestamped_base_name = f"{base_name}_{timestamp}"
# This will store the other part if separation is performed
other_part_tensor = None
other_part_sr = None
# --- Step 1: Check file type and transcribe if necessary ---
if is_midi_input:
# For MIDI files, we start at 0% and directly proceed to the rendering steps.
update_progress(0, "MIDI file detected, skipping transcription...")
print("MIDI file detected. Skipping transcription. Proceeding directly to rendering.")
if is_stereo_midi(input_file_path):
print("\nINFO: Stereo pan information (Left/Right) detected in the input MIDI. It will be rendered in stereo.\n")
midi_path_for_rendering = input_file_path
else:
temp_dir = "output/temp_transcribe" # Define temp_dir early for the fallback
os.makedirs(temp_dir, exist_ok=True)
# --- Audio Loading ---
update_progress(0.1, "Audio file detected, loading...")
print("Audio file detected. Starting pre-processing...")
# --- Robust audio loading with ffmpeg fallback ---
try:
# Try loading directly with torchaudio (efficient for supported formats).
# This works for formats like WAV, MP3, FLAC, OGG, etc.
print("Attempting to load audio with torchaudio...")
audio_tensor, native_sample_rate = torchaudio.load(input_file_path)
print("Torchaudio loading successful.")
except Exception as e:
update_progress(0.15, "Torchaudio failed, trying ffmpeg...")
print(f"Torchaudio failed: {e}. Attempting fallback with ffmpeg...")
try:
# Define a path for the temporary converted file
converted_flac_path = os.path.join(temp_dir, f"{timestamped_base_name}_converted.flac")
# Use ffmpeg to convert the input file to a clean FLAC file on disk
(
ffmpeg
.input(input_file_path)
.output(converted_flac_path, acodec='flac')
.overwrite_output()
.run(capture_stdout=True, capture_stderr=True)
)
# Now, load the newly created and guaranteed-to-be-compatible FLAC file
audio_tensor, native_sample_rate = torchaudio.load(converted_flac_path)
print(f"FFmpeg fallback successful. Loaded from: {converted_flac_path}")
except Exception as ffmpeg_err:
# In batch mode, we just print an error and skip this file
stderr = ffmpeg_err.stderr.decode() if hasattr(ffmpeg_err, 'stderr') else str(ffmpeg_err)
print(f"ERROR: Could not load {filename}. Skipping. FFmpeg error: {stderr}")
return None # Return None to indicate failure
# --- Demucs Vocal Separation Logic, now decides which stem to process ---
if not params.separate_vocals or demucs_model is None:
if params.separate_vocals and demucs_model is None:
print("ERROR: Demucs model not loaded. Skipping separation.")
# --- Standard Workflow: Transcribe the original full audio ---
audio_to_transcribe_path = os.path.join(temp_dir, f"{timestamped_base_name}_original.flac")
torchaudio.save(audio_to_transcribe_path, audio_tensor, native_sample_rate)
update_progress(0.2, "Transcribing audio to MIDI...")
midi_path_for_rendering = _transcribe_stem(audio_to_transcribe_path, f"{timestamped_base_name}_original", temp_dir, params)
else:
# --- Vocal Separation Workflow ---
update_progress(0.2, "Separating vocals with Demucs...")
# Convert to a common format (stereo, float32) that demucs expects
audio_tensor = convert_audio(audio_tensor, native_sample_rate, demucs_model.samplerate, demucs_model.audio_channels)
if torch.cuda.is_available():
audio_tensor = audio_tensor.cuda()
print("Separating audio with Demucs... This may take some time.")
# --- Wrap the model call in a no_grad() context ---
with torch.no_grad():
all_stems = apply_model(
demucs_model,
audio_tensor[None], # The input shape is [batch, channels, samples]
device='cuda' if torch.cuda.is_available() else 'cpu',
progress=True,
)[0] # Remove the batch dimension from the output
# --- Clear CUDA cache immediately after use ---
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("CUDA cache cleared.")
# --- Robust stem handling to prevent CUDA errors ---
# Instead of complex GPU indexing, we create a dictionary of stems on the CPU.
# This is safer and more robust across different hardware.
sources = {}
for i, source_name in enumerate(demucs_model.sources):
sources[source_name] = all_stems[i]
vocals_tensor = sources['vocals']
# Sum the other stems to create the accompaniment.
# This loop is safer than a single complex indexing operation.
accompaniment_tensor = torch.zeros_like(vocals_tensor)
for source_name, stem_tensor in sources.items():
if source_name != 'vocals':
accompaniment_tensor += stem_tensor
# --- Save both stems to temporary files ---
vocals_path = os.path.join(temp_dir, f"{base_name}_vocals.flac")
accompaniment_path = os.path.join(temp_dir, f"{base_name}_accompaniment.flac")
torchaudio.save(vocals_path, vocals_tensor.cpu(), demucs_model.samplerate)
torchaudio.save(accompaniment_path, accompaniment_tensor.cpu(), demucs_model.samplerate)
# --- Determine which stem is the primary target and which is the "other part" ---
primary_target_path = vocals_path if params.transcription_target == "Transcribe Vocals" else accompaniment_path
other_part_path = accompaniment_path if params.transcription_target == "Transcribe Vocals" else vocals_path
# Store the audio tensor of the "other part" for potential audio re-merging
other_part_tensor = accompaniment_tensor if params.transcription_target == "Transcribe Vocals" else vocals_tensor
other_part_sr = demucs_model.samplerate
print("Separation complete.")
# --- Main Branching Logic: Transcribe one or both stems ---
if not params.transcribe_both_stems:
print(f"Transcribing primary target only: {os.path.basename(primary_target_path)}")
update_progress(0.4, f"Transcribing primary target: {os.path.basename(primary_target_path)}")
midi_path_for_rendering = _transcribe_stem(primary_target_path, os.path.splitext(os.path.basename(primary_target_path))[0], temp_dir, params)
else:
print("Transcribing BOTH stems and merging the MIDI results.")
# Transcribe the primary target
update_progress(0.4, "Transcribing primary stem...")
midi_path_primary = _transcribe_stem(primary_target_path, os.path.splitext(os.path.basename(primary_target_path))[0], temp_dir, params)
# Transcribe the other part
update_progress(0.5, "Transcribing second stem...")
midi_path_other = _transcribe_stem(other_part_path, os.path.splitext(os.path.basename(other_part_path))[0], temp_dir, params)
# Merge the two resulting MIDI files
if midi_path_primary and midi_path_other:
update_progress(0.55, "Merging transcribed MIDIs...")
final_merged_midi_path = os.path.join(temp_dir, f"{base_name}_full_transcription.mid")
print(f"Merging transcribed MIDI files into {os.path.basename(final_merged_midi_path)}")
# A more robust MIDI merge is needed here
primary_midi = pretty_midi.PrettyMIDI(midi_path_primary)
other_midi = pretty_midi.PrettyMIDI(midi_path_other)
# Add all instruments from the other midi to the primary one
for instrument in other_midi.instruments:
instrument.name = f"Other - {instrument.name}" # Rename to avoid confusion
primary_midi.instruments.append(instrument)
primary_midi.write(final_merged_midi_path)
midi_path_for_rendering = final_merged_midi_path
elif midi_path_primary:
print("Warning: Transcription of the 'other' part failed. Using primary transcription only.")
midi_path_for_rendering = midi_path_primary
else:
raise gr.Error("Transcription of the primary target failed. Aborting.")
if not midi_path_for_rendering or not os.path.exists(midi_path_for_rendering):
print(f"ERROR: Transcription failed for {filename}. Skipping.")
return None
# --- Step 2: Render the FINAL MIDI file with selected options ---
# The progress values are now conditional based on the input file type.
update_progress(0.1 if is_midi_input else 0.6, "Applying MIDI transformations...")
# --- Auto-Recommendation Logic ---
# If the user selected the auto-recommend option, override the parameters
if params.s8bit_preset_selector == "Auto-Recommend (Analyze MIDI)":
update_progress(0.15 if is_midi_input else 0.65, "Auto-recommending 8-bit parameters...")
print("Auto-Recommendation is enabled. Analyzing MIDI features...")
try:
midi_to_analyze = pretty_midi.PrettyMIDI(midi_path_for_rendering)
default_preset = S8BIT_PRESETS[FALLBACK_PRESET_NAME]
recommended_params = recommend_8bit_params(midi_to_analyze, default_preset)
print("Recommended parameters:", recommended_params)
# Update the params object *before* the main pipeline runs
for key, value in recommended_params.items():
setattr(params, f"s8bit_{key}", value)
print("Parameters updated with recommendations.")
except Exception as e:
print(f"Could not auto-recommend parameters for {filename}: {e}.")
update_progress(0.2 if is_midi_input else 0.7, "Rendering MIDI to audio...")
print(f"Proceeding to render MIDI file: {os.path.basename(midi_path_for_rendering)}")
# Call the rendering function, Pass dictionaries directly to Render_MIDI
results_tuple = Render_MIDI(input_midi_path=midi_path_for_rendering, params=params)
# --- Vocal Re-merging Logic ---
# Vocal Re-merging only happens for audio files, so its progress value doesn't need to be conditional.
if params.separate_vocals and params.remerge_vocals and not params.transcribe_both_stems and other_part_tensor is not None:
update_progress(0.8, "Re-merging rendered audio with vocals...")
print(f"Re-merging the non-transcribed part with newly rendered music...")
# 1. Unpack the original rendered audio from the results
rendered_srate, rendered_music_int16 = results_tuple[4]
# 2. Convert the rendered music to a float tensor
rendered_music_float = rendered_music_int16.astype(np.float32) / 32767.0
rendered_music_tensor = torch.from_numpy(rendered_music_float).T
# 3. Resample if necessary
if rendered_srate != other_part_sr:
resampler = torchaudio.transforms.Resample(rendered_srate, other_part_sr)
rendered_music_tensor = resampler(rendered_music_tensor)
# 4. Pad to match lengths
len_music = rendered_music_tensor.shape[1]
len_other = other_part_tensor.shape[1]
if len_music > len_other:
padding = len_music - len_other
other_part_tensor = torch.nn.functional.pad(other_part_tensor, (0, padding))
elif len_other > len_music:
padding = len_other - len_music
rendered_music_tensor = torch.nn.functional.pad(rendered_music_tensor, (0, padding))
# 5. Merge and normalize
merged_audio_tensor = rendered_music_tensor + other_part_tensor.cpu()
max_abs = torch.max(torch.abs(merged_audio_tensor))
if max_abs > 1.0:
merged_audio_tensor /= max_abs
# 6. Convert back to the required format (int16 numpy array)
merged_audio_int16 = (merged_audio_tensor.T.numpy() * 32767).astype(np.int16)
# 7. Create the new audio tuple and UPDATE the main results_tuple
new_audio_tuple = (other_part_sr, merged_audio_int16)
temp_results_list = list(results_tuple)
temp_results_list[4] = new_audio_tuple
results_tuple = tuple(temp_results_list) # results_tuple is now updated
print("Re-merging complete.")
# --- Save final audio and return path ---
update_progress(0.9, "Saving final files...")
final_srate, final_audio_data = results_tuple[4]
final_midi_path_from_render = results_tuple[3] # Get the path of the processed MIDI
# --- Use timestamped names for final outputs ---
output_audio_dir = "output/final_audio"
output_midi_dir = "output/final_midi"
os.makedirs(output_audio_dir, exist_ok=True)
os.makedirs(output_midi_dir, exist_ok=True)
final_audio_path = os.path.join(output_audio_dir, f"{timestamped_base_name}_rendered.flac")
# Also, copy the final processed MIDI to a consistent output directory with a timestamped name
final_midi_path = os.path.join(output_midi_dir, f"{timestamped_base_name}_processed.mid")
sf.write(final_audio_path, final_audio_data, final_srate)
# Use shutil to copy the final midi file to its new home
shutil.copy(final_midi_path_from_render, final_midi_path)
# --- Log the processing time for this specific file at the end ---
file_processing_time = reqtime.time() - file_start_time
print(f"--- Pipeline finished for {filename} in {file_processing_time:.2f} seconds. ---")
print(f"Output Audio: {final_audio_path}\nOutput MIDI: {final_midi_path}")
# Return a dictionary of all results for the wrappers to use
results = {
"final_audio_path": final_audio_path,
"final_midi_path": final_midi_path,
"md5_hash": results_tuple[0],
"title": results_tuple[1],
"summary": results_tuple[2],
"plot": results_tuple[5],
"description": results_tuple[6]
}
update_progress(1.0, "Done!")
# Return both the results and the final state of the parameters object
return results, params
# =================================================================================================
# === Gradio UI Wrappers ===
# =================================================================================================
# --- Thin wrapper for batch processing ---
def batch_process_files(input_files, progress=gr.Progress(track_tqdm=True), *args):
"""
Gradio wrapper for batch processing. It iterates through files, calls the core pipeline,
and collects the output file paths. It now provides detailed, nested progress updates.
"""
if not input_files:
print("No files uploaded for batch processing.")
return [], [] # Return two empty lists
# --- Start timer for the entire batch ---
batch_start_time = reqtime.time()
# --- Generate a single timestamp for the entire batch job ---
batch_timestamp = reqtime.strftime("%Y%m%d-%H%M%S")
# Create the AppParameters object from the flat list of UI values
params = AppParameters(**dict(zip(ALL_PARAM_KEYS, args)))
output_audio_paths = []
output_midi_paths = [] # List to collect MIDI file paths
total_files = len(input_files)
# Initialize progress at 0%
progress(0, desc="Starting Batch Process...")
for i, file_obj in enumerate(input_files):
# The input from gr.File is a tempfile object, we need its path
input_path = file_obj.name
filename = os.path.basename(input_path)
# --- Nested Progress Logic ---
# Define a local function to scale the sub-progress of the pipeline
# into the correct slot of the main batch progress bar.
def batch_progress_updater(local_fraction, desc):
# Calculate the overall progress based on which file we are on (i)
# and the progress within that file (local_fraction).
progress_per_file = 1 / total_files
overall_fraction = (i / total_files) + (local_fraction * progress_per_file)
progress(overall_fraction, desc=f"({i+1}/{total_files}) {filename}: {desc}")
progress(i / total_files, desc=f"Processing {os.path.basename(input_path)} ({i+1}/{total_files})")
# --- Pass the batch_timestamp to the pipeline ---
results, _ = run_single_file_pipeline(input_path, batch_timestamp, params, progress=batch_progress_updater)
if results:
if results.get("final_audio_path"):
output_audio_paths.append(results["final_audio_path"])
if results.get("final_midi_path"):
output_midi_paths.append(results["final_midi_path"]) # Collect MIDI path
# Ensure the progress bar reaches 100% upon completion
progress(1, desc="Batch Process Complete!")
# --- Calculate and print the total batch time ---
total_batch_time = reqtime.time() - batch_start_time
print(f"\nBatch processing complete. {len(output_audio_paths)} of {total_files} files processed successfully.")
print(f"Total batch execution time: {total_batch_time:.2f} seconds.")
# --- Return both lists of paths ---
return output_audio_paths, output_midi_paths
# --- The original function is now a thin wrapper for the single file UI ---
def process_and_render_file(input_file, *args, progress=gr.Progress()):
"""
Gradio wrapper for the single file processing UI. Packs UI values into an AppParameters object.
Calls the core pipeline and formats the output for all UI components.
Main function to handle file processing. It determines the file type and calls the
appropriate functions for transcription and/or rendering based on user selections.
Now includes a progress bar.
"""
if input_file is None:
# Return a list of updates to clear all output fields and UI controls
return [gr.update(value=None)] * (7 + 14) # 7 results + 14 UI controls (13 synth + 1 preset selector)
# --- Start timer for the single file job ---
job_start_time = reqtime.time()
# --- Generate a timestamp for this single job ---
single_file_timestamp = reqtime.strftime("%Y%m%d-%H%M%S")
# Create the AppParameters object from the flat list of UI values
# The first value in *args is s8bit_preset_selector, the rest match the keys
params = AppParameters(input_file=input_file, **dict(zip(ALL_PARAM_KEYS, args)))
# Run the core pipeline, passing the timestamp and progress to the pipeline
results, final_params = run_single_file_pipeline(input_file, single_file_timestamp, params, progress=progress)
if results is None:
raise gr.Error("File processing failed. Check console for details.")
# --- Calculate and print the total job time ---
total_job_time = reqtime.time() - job_start_time
print(f"Total single-file job execution time: {total_job_time:.2f} seconds.")
# --- Prepare UI updates using the returned final_params ---
# This ensures the UI always reflects the parameters that were actually used for the render.
final_ui_updates = []
# Logic to decide what the preset selector should show after the run
if params.s8bit_preset_selector == "Auto-Recommend (Analyze MIDI)":
# After auto-recommendation, the state becomes "Custom"
final_ui_updates.append(gr.update(value="Custom"))
else:
# Otherwise, just keep the user's current selection
final_ui_updates.append(gr.update(value=final_params.s8bit_preset_selector))
# Get the keys for the 13 synthesizer controls (excluding the preset selector itself)
s8bit_control_keys = [key for key in ALL_PARAM_KEYS if key.startswith('s8bit_') and key != 's8bit_preset_selector']
# Always update all 13 controls to match the final parameters used in the backend
for key in s8bit_control_keys:
final_ui_updates.append(getattr(final_params, key))
# Format the main results for the output components
main_results = [
results['md5_hash'], results['title'], results['summary'],
results['final_midi_path'], results['final_audio_path'],
results['plot'], results['description']
]
# The total return list now has a consistent structure and logic
return main_results + final_ui_updates
# =================================================================================================
# === Gradio UI Setup ===
# =================================================================================================
if __name__ == "__main__":
# Initialize the app: download model (if needed) and apply patches
# Set to False if you don't have 'requests' or 'tqdm' installed
initialize_app()
# --- Prepare soundfonts and make the map globally accessible ---
global soundfonts_dict, demucs_model
# On application start, download SoundFonts from Hugging Face Hub if they don't exist.
soundfonts_dict = prepare_soundfonts()
print(f"Found {len(soundfonts_dict)} local SoundFonts.")
if not soundfonts_dict:
print("\nWARNING: No SoundFonts were found or could be downloaded.")
print("Rendering with SoundFonts will fail. Only the 8-bit synthesizer will be available.")
# --- Pre-load the Demucs model on startup for efficiency ---
print("Loading Demucs model (htdemucs_ft), this may take a moment on first run...")
try:
demucs_model = get_model(name='htdemucs_ft')
if torch.cuda.is_available():
demucs_model = demucs_model.cuda()
print("Demucs model loaded successfully.")
except Exception as e:
print(f"Warning: Could not load Demucs model. Vocal separation will not be available. Error: {e}")
demucs_model = None
# --- Dictionary containing descriptions for each render type ---
RENDER_TYPE_DESCRIPTIONS = {
"Render as-is": "**Mode: Pass-through.** Renders the MIDI file directly without any modifications. Advanced MIDI options will be ignored.",
"Custom render": "**Mode: Activate Advanced Options.** Applies all settings from the 'Advanced MIDI Rendering Options' accordion without making other structural changes to the MIDI.",
"Extract melody": "**Action: Simplify.** Analyzes all tracks and attempts to isolate and render only the main melody line.",
"Flip": "**Action: Experimental.** Inverts the pitch of each note around the song's average pitch.",
"Reverse": "**Action: Experimental.** Reverses the playback order of all notes in the MIDI file.",
"Repair Durations": "**Action: Fix.** Recalculates note durations to ensure they connect smoothly (legato), filling any small gaps.",
"Repair Chords": "**Action: Fix.** Analyzes and aligns notes that occur at similar times to form cleaner, more structured chords.",
"Remove Duplicate Pitches": "**Action: Simplify.** If multiple instruments play the exact same pitch at the same time, it keeps only one.",
"Longest Repeating Phrase": "**Action: Analyze.** Finds the longest, most-repeated musical phrase (often the chorus) and renders only that section.",
"Multi-Instrumental Summary": "**Action: AI Summary.** Creates a short, compressed summary of a complex, multi-instrument song.",
"Solo Piano Summary": "**Action: AI Summary.** First converts the song to a solo piano arrangement, then creates a short, compressed summary.",
"Add Drum Track": "**Action: Enhance.** Analyzes the rhythm of the MIDI and automatically generates a basic drum track to accompany it."
}
# --- Define a constant for the fallback preset name ---
# This prevents errors if the preset name is changed in the dictionary.
FALLBACK_PRESET_NAME = "Generic Chiptune Loop"
# --- Data structure for 8-bit synthesizer presets ---
# Comprehensive preset dictionary with new FX parameters for all presets
# Comprehensive preset dictionary including new JRPG and Handheld classics
# Note: Vibrato depth is mapped to a representative value on the 0-50 Hz slider.
S8BIT_PRESETS = {
# --- Classic Chiptune ---
"Mario (Super Mario Bros / スーパーマリオブラザーズ)": {
# Description: A bright square wave with a per-note vibrato, producing the classic bouncy platformer sound.
'waveform_type': 'Square', 'pulse_width': 0.3, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.25,
'vibrato_rate': 5.0, 'vibrato_depth': 5,
'smooth_notes_level': 0.8,
'continuous_vibrato_level': 0.25,
'bass_boost_level': 0.2, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Mega Man (Rockman / ロックマン)": {
# Description: A thin, sharp square wave lead with fast vibrato, iconic for its driving, heroic melodies.
'waveform_type': 'Square', 'pulse_width': 0.2, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.15,
'vibrato_rate': 6.0, 'vibrato_depth': 8,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.05,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Zelda (The Legend of Zelda / ゼルダの伝説)": {
# Description: The classic pure triangle wave lead, perfect for heroic and adventurous overworld themes.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.3,
'vibrato_rate': 4.5, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.15, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Kirby's Bubbly Melody (Hoshi no Kirby / 星のカービィ)": {
# Description: A soft, round square wave with a bouncy vibrato, creating a cheerful and adorable sound.
'waveform_type': 'Square', 'pulse_width': 0.4, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.2,
'vibrato_rate': 6.0, 'vibrato_depth': 4,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.3, # Formerly False (0.0); adds a hint of continuity for more liveliness.
'bass_boost_level': 0.1, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Pokémon (Game Boy Classics / ポケットモンスター)": {
# Description: A full, friendly square wave sound, capturing the cheerful and adventurous spirit of early handheld RPGs.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.22,
'vibrato_rate': 5.0, 'vibrato_depth': 5,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.25, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Castlevania (Akumajō Dracula / 悪魔城ドラキュラ)": {
# Description: A sharp square wave with dramatic vibrato, ideal for fast, gothic, and baroque-inspired melodies.
'waveform_type': 'Square', 'pulse_width': 0.25, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.18,
'vibrato_rate': 6.5, 'vibrato_depth': 6,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.35, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Final Fantasy (Arpeggio / ファイナルファンタジー)": {
# Description: A perfect, clean square wave with zero vibrato, creating the iconic, crystal-clear arpeggio sound.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.22,
'vibrato_rate': 5.0, 'vibrato_depth': 0,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.2,
'bass_boost_level': 0.2, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"ONI V (Wafu Mystic / ONI V 隠忍を継ぐ者)": {
# Description: A solemn triangle wave with a slow, expressive vibrato, evoking the mysterious atmosphere of Japanese folklore.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 3.5, 'vibrato_depth': 3,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.4, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Advanced System Impressions ---
"Commodore 64 (SID Feel)": {
# Description: (Impression) Uses high-speed, shallow vibrato to mimic the characteristic "buzzy" texture of the SID chip's PWM.
'waveform_type': 'Square', 'pulse_width': 0.25, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.25,
'vibrato_rate': 8.0, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.3,
'bass_boost_level': 0.2, 'noise_level': 0.05, 'distortion_level': 0.1,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Megadrive/Genesis (FM Grit)": {
# Description: (Impression) Uses FM, distortion, and noise to capture the gritty, metallic, and aggressive tone of the YM2612 chip.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.18,
'vibrato_rate': 0.0, 'vibrato_depth': 0,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.4, 'noise_level': 0.1, 'distortion_level': 0.2,
'fm_modulation_depth': 0.2, 'fm_modulation_rate': 150
},
"PC-98 (Touhou Feel / 東方Project)": {
# Description: (Impression) A very sharp square wave with fast FM, emulating the bright, high-energy leads of Japanese PC games.
'waveform_type': 'Square', 'pulse_width': 0.15, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.12,
'vibrato_rate': 7.5, 'vibrato_depth': 7,
'smooth_notes_level': 0.95,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.1, 'fm_modulation_rate': 200
},
"Roland SC-88 (GM Vibe)": {
# Description: (Impression) A clean, stable triangle wave with no effects, mimicking the polished, sample-based sounds of General MIDI.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.35,
'vibrato_rate': 0, 'vibrato_depth': 0,
'smooth_notes_level': 1.0,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.1, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Action & Rock Leads ---
"Falcom Ys (Rock Lead / イース)": {
# Description: A powerful sawtooth with slight distortion, emulating the driving rock organ and guitar leads of action JRPGs.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.15,
'vibrato_rate': 5.5, 'vibrato_depth': 6,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.8,
'bass_boost_level': 0.4, 'noise_level': 0.05, 'distortion_level': 0.15,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Arcade Brawler Lead (Street Fighter / ストリートファイター)": {
# Description: A gritty sawtooth lead with a hard attack, capturing the high-energy feel of classic fighting games.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.15,
'vibrato_rate': 5.0, 'vibrato_depth': 6,
'smooth_notes_level': 0.8,
'continuous_vibrato_level': 0.7,
'bass_boost_level': 0.4, 'noise_level': 0.05, 'distortion_level': 0.1,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Rhythm Pop Lead (Rhythm Tengoku / リズム天国)": {
# Description: A clean, round square wave perfect for the snappy, catchy feel of rhythm games.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.18,
'vibrato_rate': 4.5, 'vibrato_depth': 4,
'smooth_notes_level': 0.9, # Formerly True -> 1.0; slightly reduced for a bit more attack.
'continuous_vibrato_level': 0.8, # Formerly True -> 1.0; slightly weakened for more defined note transitions.
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Epic & Orchestral Pads ---
"Dragon Quest (Orchestral Feel / ドラゴンクエスト)": {
# Description: A pure triangle wave with a long decay, mimicking the grand, orchestral feel of a classical flute or string section.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.6,
'vibrato_rate': 3.0, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Mystic Mana Pad (Secret of Mana / 聖剣伝説2)": {
# Description: A warm, ethereal square wave pad with slow vibrato, capturing a feeling of fantasy and wonder.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.5,
'vibrato_rate': 2.5, 'vibrato_depth': 4,
'smooth_notes_level': 1.0,
'continuous_vibrato_level': 0.95,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Modern JRPG Pad (Persona / ペルソナ)": {
# Description: A warm, stylish square wave pad, capturing the modern, pop/jazz-infused feel of the Persona series.
'waveform_type': 'Square', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.5,
'vibrato_rate': 2.5, 'vibrato_depth': 4,
'smooth_notes_level': 1.0,
'continuous_vibrato_level': 0.95,
'bass_boost_level': 0.3, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Tactical Brass (Fire Emblem / ファイアーエムブレム)": {
# Description: A powerful, sustained sawtooth emulating the bold, heroic synth-brass of Fire Emblem's tactical themes.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 3.5, 'vibrato_depth': 5,
'smooth_notes_level': 0.95,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.5, 'noise_level': 0.1, 'distortion_level': 0.15,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Mecha & Tactics Brass (Super Robot Wars / スーパーロボット大戦)": {
# Description: A powerful, sustained sawtooth emulating the bold, heroic synth-brass of strategy and mecha anime themes.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 3.5, 'vibrato_depth': 5,
'smooth_notes_level': 0.95,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.5, 'noise_level': 0.1, 'distortion_level': 0.15,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Dark/Boss Atmosphere (Shin Megami Tensei / 真・女神転生)": {
# Description: An aggressive sawtooth, inspired by the dark, rock-infused themes of SMT.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.35,
'vibrato_rate': 7.0, 'vibrato_depth': 12,
'smooth_notes_level': 0.1,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.4, 'noise_level': 0.15, 'distortion_level': 0.25,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Vocal Synthesis ---
"8-Bit Vocal Lead": {
# Description: A soft, sustained triangle wave with gentle vibrato to mimic a singing voice.
'waveform_type': 'Triangle',
'pulse_width': 0.5,
'envelope_type': 'Sustained (Full Decay)',
'decay_time_s': 0.8,
'vibrato_rate': 5.5,
'vibrato_depth': 4, # Mapped from the suggested 0.15 range
'bass_boost_level': 0.1,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.9,
'noise_level': 0.02,
'distortion_level': 0.0,
'fm_modulation_depth': 0.05,
'fm_modulation_rate': 20
},
"8-Bit Male Vocal": {
# Description: A deeper, fuller triangle wave with more bass and slower vibrato for a masculine feel.
'waveform_type': 'Triangle',
'pulse_width': 0.5,
'envelope_type': 'Sustained (Full Decay)',
'decay_time_s': 1.0,
'vibrato_rate': 5.0,
'vibrato_depth': 3, # Mapped from the suggested 0.12 range
'bass_boost_level': 0.3,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'noise_level': 0.015,
'distortion_level': 0.0,
'fm_modulation_depth': 0.08,
'fm_modulation_rate': 25
},
"8-Bit Female Vocal": {
# Description: A brighter, lighter triangle wave with faster vibrato and less bass for a feminine feel.
'waveform_type': 'Triangle',
'pulse_width': 0.5,
'envelope_type': 'Sustained (Full Decay)',
'decay_time_s': 0.7,
'vibrato_rate': 6.0,
'vibrato_depth': 5, # Mapped from the suggested 0.18 range
'bass_boost_level': 0.05,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.92,
'noise_level': 0.025,
'distortion_level': 0.0,
'fm_modulation_depth': 0.04,
'fm_modulation_rate': 30
},
"Lo-Fi Vocal": {
# Description: A gritty, noisy square wave with a short decay to simulate a low-resolution vocal sample.
'waveform_type': 'Square',
'pulse_width': 0.48,
'envelope_type': 'Plucky (AD Envelope)', # "Short" implies a plucky, not sustained, envelope
'decay_time_s': 0.4,
'vibrato_rate': 4.8,
'vibrato_depth': 2, # Mapped from the suggested 0.10 range
'bass_boost_level': 0.1,
'smooth_notes_level': 0.65,
'continuous_vibrato_level': 0.6,
'noise_level': 0.05,
'distortion_level': 0.05,
'fm_modulation_depth': 0.02,
'fm_modulation_rate': 20
},
# --- Sound FX & Experimental ---
"Sci-Fi Energy Field": {
# Description: (SFX) High-speed vibrato and noise create a constant, shimmering hum suitable for energy shields or force fields.
'waveform_type': 'Triangle', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.4,
'vibrato_rate': 10.0, 'vibrato_depth': 3,
'smooth_notes_level': 0.85,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.1, 'noise_level': 0.1, 'distortion_level': 0.0,
'fm_modulation_depth': 0.05, 'fm_modulation_rate': 50
},
"Industrial Alarm": {
# Description: (SFX) Extreme vibrato rate on a sawtooth wave produces a harsh, metallic, dissonant alarm sound.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.2,
'vibrato_rate': 15.0, 'vibrato_depth': 8,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.3, 'noise_level': 0.2, 'distortion_level': 0.3,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Laser Charge-Up": {
# Description: (SFX) Extreme vibrato depth creates a dramatic, rising pitch effect, perfect for sci-fi weapon sounds.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.3,
'vibrato_rate': 4.0, 'vibrato_depth': 25,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.95,
'bass_boost_level': 0.2, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
"Unstable Machine Core": {
# Description: (SFX) Maximum depth and distortion create a chaotic, atonal noise, simulating a machine on the verge of exploding.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Sustained (Full Decay)', 'decay_time_s': 0.5,
'vibrato_rate': 1.0, 'vibrato_depth': 50,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.9,
'bass_boost_level': 0.5, 'noise_level': 0.3, 'distortion_level': 0.4,
'fm_modulation_depth': 0.5, 'fm_modulation_rate': 10
},
"Hardcore Gabber Kick": {
# Description: (Experimental) Maximum bass boost and distortion create an overwhelmingly powerful, clipped kick drum sound.
'waveform_type': 'Sawtooth', 'pulse_width': 0.5, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.1,
'vibrato_rate': 0, 'vibrato_depth': 0,
'smooth_notes_level': 0.0,
'continuous_vibrato_level': 0.0,
'bass_boost_level': 0.8, 'noise_level': 0.2, 'distortion_level': 0.5,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
# --- Utility & Starting Points ---
"Generic Chiptune Loop": {
# Description: A well-balanced, pleasant square wave lead that serves as a great starting point for custom sounds.
'waveform_type': 'Square', 'pulse_width': 0.25, 'envelope_type': 'Plucky (AD Envelope)', 'decay_time_s': 0.2,
'vibrato_rate': 5.5, 'vibrato_depth': 4,
'smooth_notes_level': 0.9,
'continuous_vibrato_level': 0.85,
'bass_boost_level': 0.25, 'noise_level': 0.0, 'distortion_level': 0.0,
'fm_modulation_depth': 0.0, 'fm_modulation_rate': 0.0
},
}
# --- Data structure for basic_pitch transcription presets ---
BASIC_PITCH_PRESETS = {
# --- General & All-Purpose ---
"Default (Balanced)": {
'description': "A good all-around starting point for most music types.",
'onset_threshold': 0.5, 'frame_threshold': 0.3, 'minimum_note_length': 128,
'minimum_frequency': 60, 'maximum_frequency': 4000,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': False
},
"Anime / J-Pop": {
'description': "For tracks with clear melodies and pop/rock arrangements.",
'onset_threshold': 0.5, 'frame_threshold': 0.3, 'minimum_note_length': 150,
'minimum_frequency': 40, 'maximum_frequency': 2500,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
# --- Specific Instruments ---
"Solo Vocals": {
'description': "Optimized for a single singing voice. Sensitive to nuances.",
'onset_threshold': 0.4, 'frame_threshold': 0.3, 'minimum_note_length': 100,
'minimum_frequency': 80, 'maximum_frequency': 1200,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Solo Piano": {
'description': "For solo piano with a wide dynamic and frequency range.",
'onset_threshold': 0.4, 'frame_threshold': 0.3, 'minimum_note_length': 120,
'minimum_frequency': 27, 'maximum_frequency': 4200,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Acoustic Guitar": {
'description': "Balanced for picked or strummed acoustic guitar.",
'onset_threshold': 0.5, 'frame_threshold': 0.3, 'minimum_note_length': 90,
'minimum_frequency': 80, 'maximum_frequency': 2500,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': False
},
"Bass Guitar": {
'description': "Isolates and transcribes only the low frequencies of a bassline.",
'onset_threshold': 0.4, 'frame_threshold': 0.3, 'minimum_note_length': 100,
'minimum_frequency': 30, 'maximum_frequency': 400,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': False
},
"Percussion / Drums": {
'description': "For drums and rhythmic elements. Catches fast, sharp hits.",
'onset_threshold': 0.7, 'frame_threshold': 0.6, 'minimum_note_length': 30,
'minimum_frequency': 40, 'maximum_frequency': 10000,
'infer_onsets': True, 'melodia_trick': False, 'multiple_bends': False
},
# --- Complex Genres ---
"Rock / Metal": {
'description': "Higher thresholds for distorted guitars, bass, and drums in a dense mix.",
'onset_threshold': 0.6, 'frame_threshold': 0.4, 'minimum_note_length': 100,
'minimum_frequency': 50, 'maximum_frequency': 3000,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Jazz (Multi-instrument)": {
'description': "High thresholds to separate notes in complex, improvisational passages.",
'onset_threshold': 0.7, 'frame_threshold': 0.5, 'minimum_note_length': 150,
'minimum_frequency': 55, 'maximum_frequency': 2000,
'infer_onsets': True, 'melodia_trick': False, 'multiple_bends': True
},
"Classical (Orchestral)": {
'description': "Longer note length to focus on sustained notes and filter out performance noise.",
'onset_threshold': 0.5, 'frame_threshold': 0.4, 'minimum_note_length': 200,
'minimum_frequency': 32, 'maximum_frequency': 4200,
'infer_onsets': True, 'melodia_trick': True, 'multiple_bends': True
},
"Electronic / Synth": {
'description': "Low thresholds and short note length for sharp, synthetic sounds.",
'onset_threshold': 0.3, 'frame_threshold': 0.2, 'minimum_note_length': 50,
'minimum_frequency': 20, 'maximum_frequency': 8000,
'infer_onsets': True, 'melodia_trick': False, 'multiple_bends': False
}
}
# --- UI visibility logic now controls three components ---
def update_vocal_ui_visibility(separate_vocals):
"""Shows or hides the separation-related UI controls based on selections."""
is_visible = gr.update(visible=separate_vocals)
return is_visible, is_visible, is_visible
def update_ui_visibility(transcription_method, soundfont_choice):
"""
Dynamically updates the visibility of UI components based on user selections.
"""
is_general = (transcription_method == "General Purpose")
is_8bit = (soundfont_choice == SYNTH_8_BIT_LABEL)
return {
general_transcription_settings: gr.update(visible=is_general),
synth_8bit_settings: gr.update(visible=is_8bit),
}
# --- Function to control visibility of advanced MIDI rendering options ---
def update_advanced_midi_options_visibility(render_type_choice):
"""
Shows or hides the advanced MIDI rendering options based on the render type.
The options are only visible if the type is NOT 'Render as-is'.
"""
is_visible = (render_type_choice != "Render as-is")
return gr.update(visible=is_visible)
# --- UI controller function to update the description text ---
def update_render_type_description(render_type_choice):
"""
Returns the description for the selected render type.
"""
return RENDER_TYPE_DESCRIPTIONS.get(render_type_choice, "Select a render type to see its description.")
# --- Controller function to apply basic_pitch presets to the UI ---
def apply_basic_pitch_preset(preset_name):
if preset_name not in BASIC_PITCH_PRESETS:
# If "Custom" is selected or name is invalid, don't change anything
return {comp: gr.update() for comp in basic_pitch_ui_components}
settings = BASIC_PITCH_PRESETS[preset_name]
# Return a dictionary that maps each UI component to its new value
return {
onset_threshold: gr.update(value=settings['onset_threshold']),
frame_threshold: gr.update(value=settings['frame_threshold']),
minimum_note_length: gr.update(value=settings['minimum_note_length']),
minimum_frequency: gr.update(value=settings['minimum_frequency']),
maximum_frequency: gr.update(value=settings['maximum_frequency']),
infer_onsets: gr.update(value=settings['infer_onsets']),
melodia_trick: gr.update(value=settings['melodia_trick']),
multiple_pitch_bends: gr.update(value=settings['multiple_bends'])
}
# --- Function to apply 8-bit synthesizer presets ---
# --- This function must be defined before the UI components that use it ---
def apply_8bit_preset(preset_name):
"""
Takes the name of a preset and returns a dictionary of gr.update objects
to set the values of the 13 8-bit synthesizer control components.
This version is more robust as it directly maps keys to UI components.
"""
# If a special value is selected or the preset is not found, return empty updates for all controls.
if preset_name in ["Custom", "Auto-Recommend (Analyze MIDI)"] or preset_name not in S8BIT_PRESETS:
# We create a dictionary mapping each control component to an empty update.
s8bit_control_keys = [key for key in ALL_PARAM_KEYS if key.startswith('s8bit_') and key != 's8bit_preset_selector']
return {ui_component_map[key]: gr.update() for key in s8bit_control_keys}
# Get the settings dictionary for the chosen preset.
settings = S8BIT_PRESETS[preset_name]
updates = {}
# Iterate through the KEY-VALUE pairs in the chosen preset's settings.
for simple_key, value in settings.items():
# Reconstruct the full component key (e.g., 'waveform_type' -> 's8bit_waveform_type')
full_key = f"s8bit_{simple_key}"
# Check if this key corresponds to a valid UI component
if full_key in ui_component_map:
component = ui_component_map[full_key]
updates[component] = gr.update(value=value)
return updates
# --- Use the dataclass to define the master list of parameter keys ---
# This is now the single source of truth for parameter order.
ALL_PARAM_KEYS = [field.name for field in fields(AppParameters) if field.name not in ["input_file", "batch_input_files"]]
app = gr.Blocks(theme=gr.themes.Base())
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Audio-to-MIDI & Advanced Renderer</h1>")
gr.Markdown(
"**Upload a Audio for transcription-then-rendering, or a MIDI for rendering-only.**\n\n"
"This application combines piano audio transcription with a powerful MIDI transformation and rendering toolkit. "
"Based on the work of [asigalov61](https://github.com/asigalov61)."
)
# --- Use Tabs for different workflows ---
with gr.Tabs():
waveform_options = gr.WaveformOptions(show_recording_waveform=False)
# --- TAB 1: SINGLE FILE PROCESSING ---
with gr.TabItem("Single File Processing"):
# --- All of your existing UI components go inside this Tab ---
with gr.Row():
with gr.Column(scale=1):
# --- INPUT COLUMN ---
gr.Markdown("## 1. Upload File")
# Changed from gr.File to gr.Audio to allow for audio preview.
# type="filepath" ensures the component returns a string path to the uploaded file.
# The component will show a player for supported audio types (e.g., WAV, MP3).
input_file = gr.Audio(
label="Input Audio or MIDI File",
type="filepath",
sources=["upload"], waveform_options=waveform_options
)
# --- The single file processing button ---
submit_btn = gr.Button("Process and Render Single File", variant="primary")
with gr.Column(scale=2):
# --- OUTPUT COLUMN ---
gr.Markdown("### 2. Results")
output_midi_title = gr.Textbox(label="MIDI Title")
output_song_description = gr.Textbox(label="MIDI Description", lines=3)
output_audio = gr.Audio(label="Rendered Audio Output", format="wav", waveform_options=waveform_options)
output_plot = gr.Plot(label="MIDI Score Plot")
with gr.Row():
output_midi = gr.File(label="Download Processed MIDI File", file_types=[".mid"])
output_midi_md5 = gr.Textbox(label="Output MIDI MD5 Hash")
output_midi_summary = gr.Textbox(label="MIDI metadata summary", lines=4)
# --- TAB 2: BATCH PROCESSING ---
with gr.TabItem("Batch Processing"):
with gr.Row():
with gr.Column():
gr.Markdown("### 1. Upload Files")
gr.Markdown("Uses the **global settings** configured above.")
batch_input_files = gr.File(
label="Upload Audio or MIDI Files",
file_count="multiple"
)
batch_process_btn = gr.Button("Process Batch", variant="primary")
with gr.Column():
gr.Markdown("### 2. Download Results")
batch_output_audio_files = gr.File(
label="Download Rendered FLAC Files",
file_count="multiple",
interactive=False
)
batch_output_midi_files = gr.File(
label="Download Processed MIDI Files",
file_count="multiple",
interactive=False
)
# --- Global Settings Accordion, Define all settings in a global, shared accordion ---
with gr.Accordion("▶️ Configure Global Settings (for both Single File and Batch)", open=True):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Transcription Settings")
# --- Transcription Method Selector ---
transcription_method = gr.Radio(["General Purpose", "Piano-Specific"], label="Audio Transcription Method", value="General Purpose",
info="Choose 'General Purpose' for most music (vocals, etc.). Choose 'Piano-Specific' only for solo piano recordings.")
# --- Stereo Processing Checkbox ---
enable_stereo_processing = gr.Checkbox(label="Enable Stereo Transcription", value=False,
info="If checked, left/right audio channels are transcribed separately and merged. Doubles processing time.")
# --- Vocal Separation Checkboxes ---
with gr.Group():
separate_vocals = gr.Checkbox(label="Separate Vocals", value=False,
info="If checked, separates the audio into vocals and music stems before processing.")
transcription_target = gr.Radio(["Transcribe Music (Accompaniment)", "Transcribe Vocals"], label="Transcription Target", value="Transcribe Music (Accompaniment)", visible=False,
info="Choose which part of the separated audio to transcribe to MIDI.")
remerge_vocals = gr.Checkbox(label="Re-merge Other Part with Rendered Audio", value=False, visible=False,
info="After rendering, merges the non-transcribed part (e.g., original vocals) back with the new music.")
transcribe_both_stems = gr.Checkbox(label="Transcribe Both Parts & Merge MIDI", value=False, visible=False,
info="If checked, transcribes BOTH vocals and music, then merges them into one MIDI file for rendering. Disables audio re-merging.")
with gr.Accordion("General Purpose Transcription Settings", open=True) as general_transcription_settings:
# --- Preset dropdown for basic_pitch ---
basic_pitch_preset_selector = gr.Dropdown(
choices=["Custom"] + list(BASIC_PITCH_PRESETS.keys()),
value="Default (Balanced)",
label="Transcription Profile Preset",
info="Select a profile to auto-fill settings for different instrument types."
"For reference only; it is recommended to test and adjust for optimal results.")
# --- The existing basic_pitch components ---
onset_threshold = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="On-set Threshold", info="Sensitivity for detecting note beginnings. Higher is stricter.")
frame_threshold = gr.Slider(0.0, 1.0, value=0.3, step=0.05, label="Frame Threshold", info="Sensitivity for detecting active notes. Higher is stricter.")
minimum_note_length = gr.Slider(10, 500, value=128, step=1, label="Minimum Note Length (ms)", info="Filters out very short, noisy notes.")
minimum_frequency = gr.Slider(0, 500, value=60, step=5, label="Minimum Frequency (Hz)", info="Ignores pitches below this frequency.")
maximum_frequency = gr.Slider(501, 10000, value=4000, step=10, label="Maximum Frequency (Hz)", info="Ignores pitches above this frequency.")
infer_onsets = gr.Checkbox(value=True, label="Infer Onsets (Boost Onsets)")
melodia_trick = gr.Checkbox(value=True, label="Melodia Trick (Contour Optimization)")
multiple_pitch_bends = gr.Checkbox(value=False, label="Allow Multiple Pitch Bends")
with gr.Column(scale=1):
# --- Rendering Settings ---
gr.Markdown("### MIDI Transformation & Rendering Settings")
render_type = gr.Radio(
list(RENDER_TYPE_DESCRIPTIONS.keys()), # Use keys from dict for choices
["Render as-is", "Custom render", "Extract melody", "Flip", "Reverse", "Repair Durations", "Repair Chords", "Remove Duplicate Pitches", "Longest Repeating Phrase", "Multi-Instrumental Summary", "Solo Piano Summary", "Add Drum Track"],
label="MIDI Transformation Render Type",
value="Render as-is",
info="Apply transformations to the MIDI before rendering. Select 'Render as-is' for basic rendering or other options for transformations.")
# --- A Markdown box for the dynamic descriptions ---
render_type_info = gr.Markdown(
value=RENDER_TYPE_DESCRIPTIONS["Render as-is"], # Set initial value
elem_classes="description-box" # Optional: for CSS styling
)
# --- SoundFont Bank with 8-bit option ---
soundfont_bank = gr.Dropdown(
[SYNTH_8_BIT_LABEL] + list(soundfonts_dict.keys()),
label="SoundFont / Synthesizer",
value=list(soundfonts_dict.keys())[0] if soundfonts_dict else SYNTH_8_BIT_LABEL)
render_sample_rate = gr.Radio(
["16000", "32000", "44100"],
label="Audio Sample Rate",
value="44100")
with gr.Accordion("Advanced MIDI Rendering Options", open=False) as advanced_rendering_options:
render_with_sustains = gr.Checkbox(label="Apply sustain pedal effects (if present)", value=True,
info="Applies sustain pedal effects (CC64) to lengthen notes, creating a more realistic and connected performance, especially for piano.")
render_output_as_solo_piano = gr.Checkbox(label="Convert to Solo Piano (Grand Piano patch)", value=False,
info="Converts all non-drum instruments to a Grand Piano patch, creating a solo piano arrangement of the entire score.")
render_remove_drums = gr.Checkbox(label="Remove drum track", value=False,
info="Removes the entire drum track (typically MIDI Channel 9) from the score. Ideal for creating instrumental or karaoke versions.")
render_transpose_to_C4 = gr.Checkbox(label="Transpose entire score to center around C4", value=False,
info="Transposes the entire score so that its average pitch is centered around C4 (MIDI note 60). Useful for standardizing key.")
render_transpose_value = gr.Slider(-12, 12, value=0, step=1, label="Transpose (semitones)",
info="Shifts the pitch of all non-drum notes up (positive values) or down (negative values) by the specified number of semitones.")
custom_render_patch = gr.Slider(-1, 127, value=-1, step=1, label="Force MIDI Patch (-1 to disable)",
info="Forces all non-drum instruments to use a single specified MIDI patch number. Set to -1 to use the original instruments.")
merge_misaligned_notes = gr.Slider(-1, 127, value=-1, label="Time to merge notes in ms (-1 to disable)",
info="Aligns the start times of notes that are played almost simultaneously (within the specified ms threshold). Cleans up sloppy timing. -1 to disable.")
render_align = gr.Radio(
["Do not align", "Start Times", "Start Times and Durations", "Start Times and Split Durations"],
label="Align notes to musical bars",
value="Do not align",
info="Quantizes the score to a fixed bar length. 'Start Times' aligns onsets. "
"'Durations' trims notes at the bar line. 'Split Durations' splits notes that cross the bar line."
)
with gr.Column(scale=1):
# --- 8-bit Synthesizer Settings ---
#
# =================================================================================
# === 8-Bit Synthesizer Parameter Guide ===
# =================================================================================
#
# --- Basic Tone Shaping ---
#
# Waveform Type: The fundamental timbre of the sound.
# - Square: The classic, bright, somewhat hollow sound of the NES. Its tone is heavily modified by Pulse Width.
# - Sawtooth: Aggressive, buzzy, and rich. Great for intense leads or gritty basslines.
# - Triangle: Soft, pure, and flute-like. Often used for basslines or gentler melodies.
#
# Pulse Width (Square Wave Only): Modifies the character of the Square wave.
# - Low (near 0.1) or High (near 0.9): Creates a thin, sharp, or nasal sound. A common choice for classic leads.
# - Mid (near 0.5): A "perfect" square wave. The sound is full, round, and most robust.
#
# Envelope Type: Shapes the volume of each note over its duration.
# - Plucky (AD): Creates a percussive, short sound that attacks instantly and then fades. Ideal for fast melodies and arpeggios.
# - Sustained (Full Decay): Creates a held-out sound that lasts for the note's full duration. Ideal for pads and atmospheric sounds.
#
# Decay Time (s): Controls how long a note's sound lasts (in the Plucky envelope).
# - Low: Very short, staccato notes.
# - High: Longer, more resonant notes that can bleed into each other.
#
# Bass Boost Level: Mixes in a sub-octave (a square wave one octave lower).
# - Low (or 0): The pure, original waveform.
# - High: Adds significant weight, thickness, and power to the sound.
#
# --- Modulation & Performance ---
#
# Vibrato Rate (Hz): The SPEED of the pitch wobble.
# - Low: A slow, gentle wavering effect.
# - High (8Hz+): A fast, frantic buzzing or trembling effect. Can create "ring-mod" style sounds at extreme values.
#
# Vibrato Depth (Hz): The INTENSITY of the pitch wobble.
# - Low (or 0): A very subtle effect, or no vibrato at all.
# - High: An extreme, dramatic pitch bend. Can sound chaotic or like a siren at extreme values.
#
# Smooth Notes (Checkbox):
# - Enabled: Applies a tiny fade-in/out to reduce clicking artifacts. Makes the sound slightly softer but cleaner.
# - Disabled: More abrupt, harsh note onsets. Can be desirable for an aggressive sound.
#
# Continuous Vibrato (Checkbox):
# - Enabled: The vibrato is smooth and connected across a musical phrase, creating a "singing" or legato effect.
# - Disabled: The vibrato resets on each new note, creating a bouncy, per-note, staccato effect (key for the "Mario" style).
#
# --- FX & Advanced Synthesis ---
#
# Noise Level: Mixes in white noise with the main waveform.
# - Low (or 0): No noise.
# - High: Adds "air," "grit," or a "hissing" quality. Essential for simulating percussion or creating wind-like sound effects.
#
# Distortion Level: Applies a wave-shaping algorithm to make the sound harsher.
# - Low (or 0): The clean, original sound.
# - High: Progressively crushes and saturates the waveform, creating a very aggressive, "fuzzy" or "broken" tone.
#
# FM Depth (Frequency Modulation): Controls the intensity of the frequency modulation.
# - Low (or 0): No FM effect.
# - High: The main frequency is more heavily altered by the FM Rate, creating complex, bell-like, metallic, or dissonant tones.
#
# FM Rate (Frequency Modulation): Controls the speed of the modulating oscillator.
# - Low: Creates a slow, vibrato-like or "wobbling" FM effect.
# - High: Creates fast modulation, resulting in bright, complex, often metallic harmonics and sidebands.
# =================================================================================
#
# --- New option for auto-recommendation ---
# Define the 8-bit UI components in one place for easy reference
gr.Markdown("### 8-bit Synthesizer Settings")
with gr.Accordion("8-bit Synthesizer Settings", open=True, visible=False) as synth_8bit_settings:
s8bit_preset_selector = gr.Dropdown(
choices=["Custom", "Auto-Recommend (Analyze MIDI)"] + list(S8BIT_PRESETS.keys()),
value="Custom",
label="Style Preset",
info="Select a preset to auto-fill the settings below. Choose 'Custom' for manual control or 'Auto-Recommend' to analyze the MIDI.\nFor reference and entertainment only. These presets are not guaranteed to be perfectly accurate."
)
s8bit_waveform_type = gr.Dropdown(
['Square', 'Sawtooth', 'Triangle'],
value='Square',
label="Waveform Type",
info="The fundamental timbre of the sound. Square is bright and hollow (classic NES), Sawtooth is aggressive and buzzy, Triangle is soft and flute-like."
)
s8bit_pulse_width = gr.Slider(
0.01, 0.99, value=0.5, step=0.01,
label="Pulse Width (Square Wave Only)",
info="Changes the character of the Square wave. Low values (~0.1) are thin and nasal, while mid values (~0.5) are full and round."
)
s8bit_envelope_type = gr.Dropdown(
['Plucky (AD Envelope)', 'Sustained (Full Decay)'],
value='Plucky (AD Envelope)',
label="Envelope Type",
info="Shapes the volume of each note. 'Plucky' is a short, percussive sound. 'Sustained' holds the note for its full duration."
)
s8bit_decay_time_s = gr.Slider(
0.01, 1.0, value=0.1, step=0.01,
label="Decay Time (s)",
info="For the 'Plucky' envelope, this is the time it takes for a note to fade to silence. Low values are short and staccato; high values are longer and more resonant."
)
s8bit_vibrato_rate = gr.Slider(
0, 20, value=5,
label="Vibrato Rate (Hz)",
info="The SPEED of the pitch wobble. Low values create a slow, gentle waver. High values create a fast, frantic buzz."
)
s8bit_vibrato_depth = gr.Slider(
0, 50, value=0,
label="Vibrato Depth (Hz)",
info="The INTENSITY of the pitch wobble. Low values are subtle or off. High values create a dramatic, siren-like pitch bend."
)
s8bit_bass_boost_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Bass Boost Level",
info="Mixes in a sub-octave (a square wave one octave lower). Low values have no effect; high values add significant weight and power."
)
s8bit_smooth_notes_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Smooth Notes Level",
info="Applies a tiny fade-in/out to reduce clicking. Low values (or 0) give a hard, abrupt attack. High values give a softer, cleaner onset."
)
s8bit_continuous_vibrato_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Continuous Vibrato Level",
info="Controls vibrato continuity across notes. Low values (0) reset vibrato on each note (bouncy). High values (1) create a smooth, connected 'singing' vibrato."
)
# --- New accordion for advanced effects ---
with gr.Accordion("Advanced Synthesis & FX", open=False):
s8bit_noise_level = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="Noise Level",
info="Mixes in white noise with the main waveform. Low values are clean; high values add 'grit', 'air', or a hissing quality, useful for percussion."
)
s8bit_distortion_level = gr.Slider(
0.0, 0.9, value=0.0, step=0.05,
label="Distortion Level",
info="Applies wave-shaping to make the sound harsher. Low values are clean; high values create a crushed, 'fuzzy', and aggressive tone."
)
s8bit_fm_modulation_depth = gr.Slider(
0.0, 1.0, value=0.0, step=0.05,
label="FM Depth",
info="Frequency Modulation intensity. At low values, there is no effect. At high values, it creates complex, metallic, or bell-like tones."
)
s8bit_fm_modulation_rate = gr.Slider(
0.0, 500.0, value=0.0, step=1.0,
label="FM Rate",
info="Frequency Modulation speed. Low values create a slow 'wobble'. High values create fast modulation, resulting in bright, dissonant harmonics."
)
# Create a dictionary mapping key names to the actual Gradio components
ui_component_map = locals()
# Build the list of all setting components in the correct order using ALL_PARAM_KEYS
all_settings_components = [ui_component_map[key] for key in ALL_PARAM_KEYS]
# --- FIX START: Isolate the preset selector from the controls it updates ---
# Original list of all 14 synth components
s8bit_ui_keys = [key for key in ALL_PARAM_KEYS if key.startswith('s8bit_')]
s8bit_ui_components = [ui_component_map[key] for key in s8bit_ui_keys]
# NEW: Create a separate list containing only the 13 controls to be updated
s8bit_control_components = [comp for comp in s8bit_ui_components if comp != s8bit_preset_selector]
# The list of basic_pitch UI components that can be updated by its preset selector.
basic_pitch_keys = ['onset_threshold', 'frame_threshold', 'minimum_note_length', 'minimum_frequency', 'maximum_frequency',
'infer_onsets', 'melodia_trick', 'multiple_pitch_bends']
basic_pitch_ui_components = [ui_component_map[key] for key in basic_pitch_keys]
# Define inputs and outputs for Gradio events
single_file_inputs = [input_file] + all_settings_components
result_outputs = [output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot, output_song_description]
# The output list for the single file process now correctly includes all 14 synth components
single_file_outputs = result_outputs + s8bit_ui_components
batch_inputs = [batch_input_files] + all_settings_components
batch_outputs = [batch_output_audio_files, batch_output_midi_files]
# Event Handling for Single File Tab
submit_btn.click(
fn=process_and_render_file,
inputs=single_file_inputs,
outputs=single_file_outputs
)
# --- Event Handling for Batch Tab ---
batch_process_btn.click(
fn=batch_process_files,
inputs=batch_inputs,
outputs=batch_outputs
)
# Event listeners for UI visibility and presets
separate_vocals.change(
fn=update_vocal_ui_visibility,
inputs=separate_vocals,
outputs=[transcription_target, remerge_vocals, transcribe_both_stems]
)
# --- Listeners for dynamic UI updates ---
transcription_method.change(
fn=lambda x: gr.update(visible=(x == "General Purpose")),
inputs=transcription_method,
outputs=general_transcription_settings
)
soundfont_bank.change(
fn=lambda x: gr.update(visible=(x == SYNTH_8_BIT_LABEL)),
inputs=soundfont_bank,
outputs=synth_8bit_settings
)
# --- Event listener for the new basic_pitch preset dropdown ---
basic_pitch_preset_selector.change(
fn=apply_basic_pitch_preset,
inputs=basic_pitch_preset_selector,
outputs=basic_pitch_ui_components
)
# --- Event listener for the 8-bit preset selector ---
s8bit_preset_selector.change(
fn=apply_8bit_preset,
inputs=s8bit_preset_selector,
outputs=s8bit_control_components
)
# --- New event listener for the render_type radio button ---
# This listener now has TWO outputs
render_type.change(
fn=update_advanced_midi_options_visibility,
inputs=render_type,
outputs=advanced_rendering_options
).then( # Chain another event to the same trigger
fn=update_render_type_description,
inputs=render_type,
outputs=render_type_info
)
# Launch the Gradio app
app.queue().launch(inbrowser=True, debug=True)
|