File size: 54,494 Bytes
adcbc9f
 
b114cd4
adcbc9f
 
80ab93c
adcbc9f
 
b114cd4
adcbc9f
b114cd4
 
adcbc9f
80ab93c
adcbc9f
 
 
 
4299f7c
adcbc9f
 
26312c5
4299f7c
b934418
 
cd46d93
 
adcbc9f
b934418
cd46d93
adcbc9f
 
b114cd4
b934418
adcbc9f
 
b934418
adcbc9f
cd46d93
adcbc9f
53409b8
951967e
4543735
adcbc9f
b780647
b114cd4
 
 
b780647
adcbc9f
3888ab7
 
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b114cd4
adcbc9f
80ab93c
adcbc9f
 
 
80ab93c
b114cd4
 
adcbc9f
 
b114cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
80ab93c
adcbc9f
 
 
 
 
 
 
80ab93c
 
 
 
 
 
 
 
 
 
 
 
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ab93c
adcbc9f
 
 
 
b114cd4
 
adcbc9f
 
b114cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adcbc9f
b114cd4
 
 
 
 
 
 
 
 
 
 
 
 
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ab93c
adcbc9f
 
 
 
 
 
 
 
 
 
 
e94f552
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29090fa
adcbc9f
 
 
6df655f
adcbc9f
8b3de7f
 
f076c55
 
2fd537d
8b3de7f
e2a8b2b
8b3de7f
9ed302a
1424ad3
adcbc9f
 
 
80ab93c
 
1424ad3
adcbc9f
 
 
 
 
 
 
 
 
 
 
8d39a27
4543735
adcbc9f
 
2a2c4ee
660b28d
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424ad3
 
adcbc9f
 
fe6e100
adcbc9f
 
 
 
4543735
2967e03
adcbc9f
 
 
f076c55
 
 
 
2fd537d
adcbc9f
 
 
 
 
 
2529f3d
 
adcbc9f
8ea7c59
b114cd4
adcbc9f
4543735
 
 
4d34e84
 
 
b114cd4
6df655f
 
abb25f7
cf7d19c
4d34e84
 
8d39a27
 
adcbc9f
410f581
6df655f
adcbc9f
410f581
7485e9b
ffdd828
d57ab6a
736f5d9
ecaa203
24957f5
9705956
c0f9cf2
8a5fb8f
1b6bdce
d57ab6a
c0f9cf2
 
 
884a083
8efd5f1
f2bdfe6
884a083
a967a4d
 
 
 
adcbc9f
8d39a27
6df655f
adcbc9f
598a5c4
adcbc9f
 
 
 
 
 
8b3de7f
f0b4cee
8b3de7f
 
adcbc9f
b114cd4
9ed302a
d46a61a
9ed302a
adcbc9f
9ed302a
d46a61a
9ed302a
 
 
d46a61a
9ed302a
4299f7c
410f581
4801166
74f5b97
adcbc9f
406db87
74f5b97
adcbc9f
406db87
7a7d25f
adcbc9f
410f581
cf187c8
 
adcbc9f
9a96351
 
74f5b97
9a96351
adcbc9f
9a96351
 
adcbc9f
cf187c8
f4a049a
adcbc9f
 
 
1424ad3
adcbc9f
410f581
e94f552
 
adcbc9f
9a96351
adcbc9f
9a96351
 
8d69657
9a96351
 
 
 
 
598a5c4
adcbc9f
 
67e09bb
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57440b4
adcbc9f
 
 
 
 
 
 
f7f27b0
adcbc9f
 
f7f27b0
adcbc9f
 
 
 
 
 
 
 
 
 
 
80ab93c
adcbc9f
 
b114cd4
adcbc9f
 
 
b114cd4
 
adcbc9f
 
 
f7f27b0
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3858291
adcbc9f
 
fd58682
b114cd4
adcbc9f
 
 
 
2a2c4ee
adcbc9f
6df655f
91d5e8a
adcbc9f
 
 
 
fd58682
 
8a1f411
b114cd4
adcbc9f
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
 
 
 
 
80ab93c
 
adcbc9f
 
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
 
 
b114cd4
 
 
 
 
adcbc9f
 
 
 
 
 
 
b114cd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adcbc9f
 
 
 
 
 
 
 
80ab93c
8d39a27
adcbc9f
8d39a27
1309ddb
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
6df655f
3888ab7
adcbc9f
 
 
800d0d0
adcbc9f
 
 
 
 
800d0d0
adcbc9f
 
 
3888ab7
adcbc9f
8b3de7f
3888ab7
adcbc9f
 
80ab93c
adcbc9f
 
 
1309ddb
adcbc9f
 
 
 
 
 
 
 
 
 
80ab93c
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
b114cd4
 
 
 
 
 
 
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ab93c
 
adcbc9f
 
 
 
 
 
 
 
80ab93c
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b114cd4
adcbc9f
 
 
 
 
 
 
80ab93c
adcbc9f
 
 
 
 
c04453c
adcbc9f
 
 
 
 
 
d85cb0d
adcbc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
# =================================================================
#
# Merged and Integrated Script for Audio/MIDI Processing and Rendering (Stereo Enhanced)
#
# This script combines two functionalities:
# 1. Transcribing audio to MIDI using two methods:
#    a) A general-purpose model (basic-pitch by Spotify).
#    b) A model specialized for solo piano (ByteDance).
#    - Includes stereo processing by splitting channels, transcribing independently, and merging MIDI.
# 2. Applying advanced transformations and re-rendering MIDI files using:
#    a) Standard SoundFonts via FluidSynth (produces stereo audio).
#    b) A custom 8-bit style synthesizer for a chiptune sound (updated for stereo output).
#
# The user can upload a Audio (e.g., WAV, MP3), or MIDI file.
# - If an audio file is uploaded, it is first transcribed to MIDI using the selected method.
# - The resulting MIDI (or an uploaded MIDI) can then be processed
#   with various effects and rendered into audio.
#
#================================================================
# Original sources:
# https://huggingface.co/spaces/asigalov61/ByteDance-Solo-Piano-Audio-to-MIDI-Transcription
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Renderer
#================================================================
# Packages:
#
#   sudo apt install fluidsynth
#
# =================================================================
# Requirements:
#
#   pip install gradio torch pytz numpy scipy matplotlib networkx scikit-learn
#   pip install piano_transcription_inference huggingface_hub
#   pip install basic-pitch pretty_midi librosa soundfile
#
# =================================================================
# Core modules:
#
#   git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#
# =================================================================

import os
import hashlib
import time as reqtime
import copy
import librosa
import pyloudnorm as pyln
import soundfile as sf

import torch
import gradio as gr

from src.piano_transcription.utils import initialize_app

from piano_transcription_inference  import PianoTranscription, utilities, sample_rate as transcription_sample_rate

# --- Import core transcription and MIDI processing libraries ---
from src import TMIDIX, TPLOTS
from src import MIDI
from src.midi_to_colab_audio import midi_to_colab_audio

# --- Imports for General Purpose Transcription (basic-pitch) ---
import basic_pitch
from basic_pitch.inference import predict
from basic_pitch import ICASSP_2022_MODEL_PATH

# --- Imports for 8-bit Synthesizer & MIDI Merging ---
import pretty_midi
import numpy as np
from scipy import signal

# =================================================================================================
# === Hugging Face SoundFont Downloader ===
# =================================================================================================
from huggingface_hub import hf_hub_download
import glob

# --- Define a constant for the 8-bit synthesizer option ---
SYNTH_8_BIT_LABEL = "None (8-bit Synthesizer)"

def prepare_soundfonts():
    """
    Ensures a default set of SoundFonts are downloaded, then scans the 'src/sf2'
    directory recursively for all .sf2 files.
    Returns a dictionary mapping a user-friendly name to its full file path, with
    default soundfonts listed first in their specified order.

    Downloads soundfont files from the specified Hugging Face Space repository
    to a local 'src/sf2' directory if they don't already exist.
    Returns a list of local paths to the soundfont files.
    """
    SF2_REPO_ID = "asigalov61/Advanced-MIDI-Renderer"
    SF2_DIR = "src/sf2"
    # This list is now just for ensuring default files exist
    # {"Super GM": 0, "Orpheus GM": 1, "Live HQ GM": 2, "Nice Strings + Orchestra": 3, "Real Choir": 4, "Super Game Boy": 5, "Proto Square": 6}
    DEFAULT_SF2_FILENAMES = [
        "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
        "Orpheus_18.06.2020.sf2",
        "Live HQ Natural SoundFont GM.sf2",
        "Nice-Strings-PlusOrchestra-v1.6.sf2",
        "KBH-Real-Choir-V2.5.sf2",
        "SuperGameBoy.sf2",
        "ProtoSquare.sf2"
    ]

    # Create the target directory if it doesn't exist
    os.makedirs(SF2_DIR, exist_ok=True)
    
    # --- Step 1: Ensure default SoundFonts are available ---
    print("Checking for SoundFont files...")
    for filename in DEFAULT_SF2_FILENAMES:
        local_path = os.path.join(SF2_DIR, filename)
        
        # Check if the file already exists locally to avoid re-downloading
        if not os.path.exists(local_path):
            print(f"Downloading '{filename}' from Hugging Face Hub...")
            try:
                # Use hf_hub_download to get the file
                # It will be downloaded to the specified local directory
                hf_hub_download(
                    repo_id=SF2_REPO_ID,
                    repo_type='space',  # Specify that the repository is a Space
                    filename=f"{filename}",  # The path to the file within the repository
                    local_dir=SF2_DIR,
                    # local_dir_use_symlinks=False  # Copy file to the dir for a clean folder structure
                )
                print(f"'{filename}' downloaded successfully.")
            except Exception as e:
                print(f"Error downloading {filename}: {e}")
                # If download fails, we might not be able to use this soundfont

    # --- Step 2: Scan the entire directory for all .sf2 files ---
    print(f"Scanning '{SF2_DIR}' for all .sf2 files...")
    all_sfs_map = {}
    # Use glob with recursive=True to find all .sf2 files in subdirectories
    search_pattern = os.path.join(SF2_DIR, '**', '*.sf2')
    for full_path in glob.glob(search_pattern, recursive=True):
        # Create a user-friendly display name, including subfolder if it exists
        relative_path = os.path.relpath(full_path, SF2_DIR)
        display_name = os.path.splitext(relative_path)[0].replace("\\", "/") # Use forward slashes for consistency
        all_sfs_map[display_name] = full_path
        
    # --- Step 3: Create the final ordered dictionary based on priority ---
    ordered_soundfont_map = {}

    # Create display names for default files (filename without extension)
    default_display_names = [os.path.splitext(f)[0] for f in DEFAULT_SF2_FILENAMES]
    
    # Separate other files from the default ones
    other_display_names = [name for name in all_sfs_map.keys() if name not in default_display_names]
    other_display_names.sort() # Sort the rest alphabetically

    # Add default soundfonts first, maintaining the order from DEFAULT_SF2_FILENAMES
    for name in default_display_names:
        if name in all_sfs_map: # Check if the file was actually found by the scanner
            ordered_soundfont_map[name] = all_sfs_map[name]
            
    # Add all other soundfonts after the default ones
    for name in other_display_names:
        ordered_soundfont_map[name] = all_sfs_map[name]

    return ordered_soundfont_map

# =================================================================================================
# === 8-bit Style Synthesizer (Stereo Enabled) ===
# =================================================================================================
def synthesize_8bit_style(midi_data, waveform_type, envelope_type, decay_time_s, pulse_width, vibrato_rate, vibrato_depth, bass_boost_level, fs=44100):
    """
    Synthesizes an 8-bit style audio waveform from a PrettyMIDI object.
    This function generates waveforms manually instead of using a synthesizer like FluidSynth.
    Includes an optional sub-octave bass booster with adjustable level.
    Instruments are panned based on their order in the MIDI file.
    Instrument 1 -> Left, Instrument 2 -> Right.
    """
    total_duration = midi_data.get_end_time()
    # Initialize a stereo waveform buffer (2 channels: Left, Right)
    waveform = np.zeros((2, int(total_duration * fs) + fs))
    
    num_instruments = len(midi_data.instruments)

    for i, instrument in enumerate(midi_data.instruments):
        # --- Panning Logic ---
        # Default to center-panned mono
        pan_l, pan_r = 0.707, 0.707
        if num_instruments == 2:
            if i == 0:  # First instrument panned left
                pan_l, pan_r = 1.0, 0.0
            elif i == 1:  # Second instrument panned right
                pan_l, pan_r = 0.0, 1.0
        elif num_instruments > 2:
            if i == 0: pan_l, pan_r = 1.0, 0.0 # Left
            elif i == 1: pan_l, pan_r = 0.0, 1.0 # Right
            # Other instruments remain centered

        for note in instrument.notes:
            freq = pretty_midi.note_number_to_hz(note.pitch)
            note_duration = note.end - note.start
            num_samples = int(note_duration * fs)
            if num_samples == 0:
                continue

            t = np.linspace(0., note_duration, num_samples, endpoint=False)
            
            # --- Vibrato LFO ---
            vibrato_lfo = vibrato_depth * np.sin(2 * np.pi * vibrato_rate * t)

            # --- Waveform Generation (Main Oscillator) ---
            if waveform_type == 'Square':
                note_waveform = signal.square(2 * np.pi * (freq + vibrato_lfo) * t, duty=pulse_width)
            elif waveform_type == 'Sawtooth':
                note_waveform = signal.sawtooth(2 * np.pi * (freq + vibrato_lfo) * t)
            elif waveform_type == 'Triangle':
                note_waveform = signal.sawtooth(2 * np.pi * (freq + vibrato_lfo) * t, width=0.5)

            # --- Bass Boost (Sub-Octave Oscillator) ---
            if bass_boost_level > 0:
                bass_freq = freq / 2.0
                # Only add bass if the frequency is reasonably audible
                if bass_freq > 20:
                    # Bass uses a simple square wave, no vibrato, for stability
                    bass_sub_waveform = signal.square(2 * np.pi * bass_freq * t, duty=0.5)
                    # Mix the main and bass waveforms.
                    # As bass level increases, slightly decrease main waveform volume to prevent clipping.
                    main_level = 1.0 - (0.5 * bass_boost_level)
                    note_waveform = (note_waveform * main_level) + (bass_sub_waveform * bass_boost_level)

            # --- ADSR Envelope ---
            start_amp = note.velocity / 127.0
            envelope = np.zeros(num_samples)
            
            if envelope_type == 'Plucky (AD Envelope)' and num_samples > 0:
                attack_time_s = 0.005
                attack_samples = min(int(attack_time_s * fs), num_samples)
                decay_samples = min(int(decay_time_s * fs), num_samples - attack_samples)
                
                envelope[:attack_samples] = np.linspace(0, start_amp, attack_samples)
                if decay_samples > 0:
                    envelope[attack_samples:attack_samples+decay_samples] = np.linspace(start_amp, 0, decay_samples)
            elif envelope_type == 'Sustained (Full Decay)' and num_samples > 0:
                envelope = np.linspace(start_amp, 0, num_samples)

            # Apply envelope to the (potentially combined) waveform
            note_waveform *= envelope

            start_sample = int(note.start * fs)
            end_sample = start_sample + num_samples
            if end_sample > waveform.shape[1]:
                end_sample = waveform.shape[1]
                note_waveform = note_waveform[:end_sample-start_sample]
            
            # Add the mono note waveform to the stereo buffer with panning
            waveform[0, start_sample:end_sample] += note_waveform * pan_l
            waveform[1, start_sample:end_sample] += note_waveform * pan_r
            
    return waveform # Returns a (2, N) numpy array


def analyze_midi_velocity(midi_path):
    midi = pretty_midi.PrettyMIDI(midi_path)
    all_velocities = []

    print(f"Analyzing velocity for MIDI: {midi_path}")
    for i, instrument in enumerate(midi.instruments):
        velocities = [note.velocity for note in instrument.notes]
        all_velocities.extend(velocities)

        if velocities:
            print(f"Instrument {i} ({instrument.name}):")
            print(f"  Notes count: {len(velocities)}")
            print(f"  Velocity min: {min(velocities)}")
            print(f"  Velocity max: {max(velocities)}")
            print(f"  Velocity mean: {np.mean(velocities):.2f}")
        else:
            print(f"Instrument {i} ({instrument.name}): no notes found.")

    if all_velocities:
        print("\nOverall MIDI velocity stats:")
        print(f"  Total notes: {len(all_velocities)}")
        print(f"  Velocity min: {min(all_velocities)}")
        print(f"  Velocity max: {max(all_velocities)}")
        print(f"  Velocity mean: {np.mean(all_velocities):.2f}")
    else:
        print("No notes found in this MIDI.")


def scale_instrument_velocity(instrument, scale=0.8):
    for note in instrument.notes:
        note.velocity = max(1, min(127, int(note.velocity * scale)))


def normalize_loudness(audio_data, sample_rate, target_lufs=-23.0):
    """
    Normalizes the audio data to a target integrated loudness (LUFS).
    This provides more consistent perceived volume than peak normalization.

    Args:
        audio_data (np.ndarray): The audio signal.
        sample_rate (int): The sample rate of the audio.
        target_lufs (float): The target loudness in LUFS. Defaults to -23.0,
                             a common standard for broadcast.

    Returns:
        np.ndarray: The loudness-normalized audio data.
    """
    try:
        # 1. Measure the integrated loudness of the input audio
        meter = pyln.Meter(sample_rate) # create meter
        loudness = meter.integrated_loudness(audio_data)

        # 2. Calculate the gain needed to reach the target loudness
        # The gain is applied in the linear domain, so we convert from dB
        loudness_gain_db = target_lufs - loudness
        loudness_gain_linear = 10.0 ** (loudness_gain_db / 20.0)

        # 3. Apply the gain
        normalized_audio = audio_data * loudness_gain_linear

        # 4. Final safety check: peak normalize to prevent clipping, just in case
        # the loudness normalization results in peaks > 1.0
        peak_val = np.max(np.abs(normalized_audio))
        if peak_val > 1.0:
            normalized_audio /= peak_val
            print(f"Warning: Loudness normalization resulted in clipping. Audio was peak-normalized as a safeguard.")
        
        print(f"Audio normalized from {loudness:.2f} LUFS to target {target_lufs} LUFS.")
        return normalized_audio

    except Exception as e:
        print(f"Loudness normalization failed: {e}. Falling back to original audio.")
        return audio_data


# =================================================================================================
# === MIDI Merging Function ===
# =================================================================================================
def merge_midis(midi_path_left, midi_path_right, output_path):
    """
    Merges two MIDI files into a single MIDI file. This robust version iterates
    through ALL instruments in both MIDI files, ensuring no data is lost if the
    source files are multi-instrumental.

    It applies hard-left panning (Pan=0) to every instrument from the left MIDI
    and hard-right panning (Pan=127) to every instrument from the right MIDI.
    """
    try:
        analyze_midi_velocity(midi_path_left)
        analyze_midi_velocity(midi_path_right)
        midi_left = pretty_midi.PrettyMIDI(midi_path_left)
        midi_right = pretty_midi.PrettyMIDI(midi_path_right)
        
        merged_midi = pretty_midi.PrettyMIDI()

        # --- Process ALL instruments from the left channel MIDI ---
        if midi_left.instruments:
            print(f"Found {len(midi_left.instruments)} instrument(s) in the left channel MIDI.")
            # Use a loop to iterate through every instrument
            for instrument in midi_left.instruments:
                scale_instrument_velocity(instrument, scale=0.8)
                # To avoid confusion, we can prefix the instrument name
                instrument.name = f"Left - {instrument.name if instrument.name else 'Instrument'}"
                
                # Create and add the Pan Left control change
                # Create a Control Change event for Pan (controller number 10).
                # Set its value to 0 for hard left panning.
                # Add it at the very beginning of the track (time=0.0).
                pan_left = pretty_midi.ControlChange(number=10, value=0, time=0.0)
                # Use insert() to ensure the pan event is the very first one
                instrument.control_changes.insert(0, pan_left)
                
                # Append the fully processed instrument to the merged MIDI
                merged_midi.instruments.append(instrument)
            
        # --- Process ALL instruments from the right channel MIDI ---
        if midi_right.instruments:
            print(f"Found {len(midi_right.instruments)} instrument(s) in the right channel MIDI.")
            # Use a loop here as well
            for instrument in midi_right.instruments:
                scale_instrument_velocity(instrument, scale=0.8)
                instrument.name = f"Right - {instrument.name if instrument.name else 'Instrument'}"
                
                # Create and add the Pan Right control change
                # Create a Control Change event for Pan (controller number 10).
                # Set its value to 127 for hard right panning.
                # Add it at the very beginning of the track (time=0.0).
                pan_right = pretty_midi.ControlChange(number=10, value=127, time=0.0)
                instrument.control_changes.insert(0, pan_right)
                
                merged_midi.instruments.append(instrument)
            
        merged_midi.write(output_path)
        print(f"Successfully merged all instruments and panned into '{os.path.basename(output_path)}'")
        analyze_midi_velocity(output_path)
        return output_path
        
    except Exception as e:
        print(f"Error merging MIDI files: {e}")
        # Fallback logic remains the same
        if os.path.exists(midi_path_left):
            print("Fallback: Using only the left channel MIDI.")
            return midi_path_left
        return None


# =================================================================================================
# === Stage 1: Audio to MIDI Transcription Functions ===
# =================================================================================================

def TranscribePianoAudio(input_file):
    """
    Transcribes a WAV or MP3 audio file of a SOLO PIANO performance into a MIDI file.
    This uses the ByteDance model.
    Args:
        input_file_path (str): The path to the input audio file.
    Returns:
        str: The file path of the generated MIDI file.
    """
    print('=' * 70)
    print('STAGE 1: Starting Piano-Specific Transcription')
    print('=' * 70)

    # Generate a unique output filename for the MIDI
    fn = os.path.basename(input_file)
    fn1 = fn.split('.')[0]

    # Use os.path.join to create a platform-independent directory path
    output_dir = os.path.join("output", "transcribed_piano_")
    out_mid_path = os.path.join(output_dir, fn1 + '.mid')
    
    # Check for the directory's existence and create it if necessary
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    print('-' * 70)
    print(f'Input file name: {fn}')
    print(f'Output MIDI path: {out_mid_path}')
    print('-' * 70)
    
    # Load audio using the utility function
    print('Loading audio...')
    (audio, _) = utilities.load_audio(input_file, sr=transcription_sample_rate, mono=True)
    print('Audio loaded successfully.')
    print('-' * 70)
    
    # Initialize the transcription model
    # Use 'cuda' if a GPU is available and configured, otherwise 'cpu'
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f'Loading transcriptor model... device= {device}')
    transcriptor = PianoTranscription(device=device, checkpoint_path="src/models/CRNN_note_F1=0.9677_pedal_F1=0.9186.pth")
    print('Transcriptor loaded.')
    print('-' * 70)
    
    # Perform transcription
    print('Transcribing audio to MIDI (Piano-Specific)...')
    # This function call saves the MIDI file to the specified path
    transcriptor.transcribe(audio, out_mid_path)
    print('Piano transcription complete.')
    print('=' * 70)
    
    # Return the path to the newly created MIDI file
    return out_mid_path

def TranscribeGeneralAudio(input_file, onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool):
    """
    Transcribes a general audio file into a MIDI file using basic-pitch.
    This is suitable for various instruments and vocals.
    """
    print('=' * 70)
    print('STAGE 1: Starting General Purpose Transcription')
    print('=' * 70)

    fn = os.path.basename(input_file)
    fn1 = fn.split('.')[0]
    output_dir = os.path.join("output", "transcribed_general_")
    out_mid_path = os.path.join(output_dir, fn1 + '.mid')
    os.makedirs(output_dir, exist_ok=True)

    print(f'Input file: {fn}\nOutput MIDI: {out_mid_path}')
    
    # --- Perform transcription using basic-pitch ---
    print('Transcribing audio to MIDI (General Purpose)...')
    # The predict function handles audio loading internally
    model_output, midi_data, note_events = basic_pitch.inference.predict(
        audio_path=input_file,
        model_or_model_path=ICASSP_2022_MODEL_PATH,
        onset_threshold=onset_thresh,
        frame_threshold=frame_thresh,
        minimum_note_length=min_note_len,
        minimum_frequency=min_freq,
        maximum_frequency=max_freq,
        infer_onsets=infer_onsets_bool,
        melodia_trick=melodia_trick_bool,
        multiple_pitch_bends=multiple_bends_bool
    )
    
    # --- Save the MIDI file ---
    midi_data.write(out_mid_path)
    print('General transcription complete.')
    print('=' * 70)
    
    return out_mid_path

# =================================================================================================
# === Stage 2: MIDI Transformation and Rendering Function ===
# =================================================================================================

def Render_MIDI(input_midi_path, 
                render_type, 
                soundfont_bank, 
                render_sample_rate,
                render_with_sustains,
                merge_misaligned_notes,
                custom_render_patch,
                render_align,
                render_transpose_value,
                render_transpose_to_C4,
                render_output_as_solo_piano,
                render_remove_drums,
                # --- 8-bit synth params ---
                s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s, 
                s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth,
                s8bit_bass_boost_level
                ):
    """
    Processes and renders a MIDI file according to user-defined settings.
    Can render using SoundFonts or a custom 8-bit synthesizer.
    Args:
        input_midi_path (str): The path to the input MIDI file.
        All other arguments are rendering options from the Gradio UI.
    Returns:
        A tuple containing all the output elements for the Gradio UI.
    """
    print('*' * 70)
    print('STAGE 2: Starting MIDI Rendering')
    print('*' * 70)

    # --- File and Settings Setup ---
    fn = os.path.basename(input_midi_path)
    fn1 = fn.split('.')[0]
    
    # Use os.path.join to create a platform-independent directory path
    output_dir = os.path.join("output", "rendered_midi")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    # Now, join the clean directory path with the filename
    new_fn_path = os.path.join(output_dir, fn1 + '_rendered.mid')

    try:
        with open(input_midi_path, 'rb') as f:
            fdata = f.read()
        input_midi_md5hash = hashlib.md5(fdata).hexdigest()
    except FileNotFoundError:
        # Handle cases where the input file might not exist
        print(f"Error: Input MIDI file not found at {input_midi_path}")
        return [None] * 7 # Return empty values for all outputs

    print('=' * 70)
    print('Requested settings:')
    print(f'Input MIDI file name: {fn}')
    print(f'Input MIDI md5 hash: {input_midi_md5hash}')
    print('-' * 70)
    print(f'Render type: {render_type}')
    print(f'Soundfont bank: {soundfont_bank}')
    print(f'Audio render sample rate: {render_sample_rate}')
    # ... (add other print statements for settings if needed)
    print('=' * 70)
    
    # --- MIDI Processing using TMIDIX ---
    print('Processing MIDI... Please wait...')
    raw_score = MIDI.midi2single_track_ms_score(fdata)
    escore = TMIDIX.advanced_score_processor(raw_score, 
                                             return_enhanced_score_notes=True, 
                                             apply_sustain=render_with_sustains
                                            )[0]

    # Handle cases where the MIDI might not contain any notes
    if not escore:
        print("Warning: MIDI file contains no processable notes.")
        return ("N/A", fn1, "MIDI file contains no notes.",None, None, None, "No notes found.")

    # This line will now work correctly because merge_misaligned_notes is guaranteed to be an integer.
    if merge_misaligned_notes > 0:
        escore = TMIDIX.merge_escore_notes(escore, merge_threshold=merge_misaligned_notes)
        
    escore = TMIDIX.augment_enhanced_score_notes(escore, timings_divider=1)

    first_note_index = [e[0] for e in raw_score[1]].index('note')
    cscore = TMIDIX.chordify_score([1000, escore])

    meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]

    aux_escore_notes = TMIDIX.augment_enhanced_score_notes(escore, sort_drums_last=True)
    song_description = TMIDIX.escore_notes_to_text_description(aux_escore_notes)
    
    print('Done!')
    print('=' * 70)
    print('Input MIDI metadata:', meta_data[:5])
    print('=' * 70)
    print('Input MIDI song description:', song_description)
    print('=' * 70)
    print('Processing...Please wait...')

    # A deep copy of the score to be modified
    output_score = copy.deepcopy(escore)

    # Apply transformations based on render_type
    if render_type == "Extract melody":
        output_score = TMIDIX.add_melody_to_enhanced_score_notes(escore, return_melody=True)
        output_score = TMIDIX.recalculate_score_timings(output_score)
    elif render_type == "Flip":
        output_score = TMIDIX.flip_enhanced_score_notes(escore)
    elif render_type == "Reverse":
        output_score = TMIDIX.reverse_enhanced_score_notes(escore)
    elif render_type == 'Repair Durations':
        output_score = TMIDIX.fix_escore_notes_durations(escore, min_notes_gap=0)
    elif render_type == 'Repair Chords':
        fixed_cscore = TMIDIX.advanced_check_and_fix_chords_in_chordified_score(cscore)[0]
        output_score = TMIDIX.flatten(fixed_cscore)
    elif render_type == 'Remove Duplicate Pitches':
        output_score = TMIDIX.remove_duplicate_pitches_from_escore_notes(escore)
    elif render_type == "Add Drum Track":
        nd_escore = [e for e in escore if e[3] != 9]
        nd_escore = TMIDIX.augment_enhanced_score_notes(nd_escore)
        output_score = TMIDIX.advanced_add_drums_to_escore_notes(nd_escore)

        for e in output_score:
            e[1] *= 16
            e[2] *= 16

    print('MIDI processing complete.')
    print('=' * 70)

    # --- Final Processing and Patching ---
    if render_type != "Render as-is":
        print('Applying final adjustments (transpose, align, patch)...')
        if custom_render_patch != -1: # -1 indicates no change
            for e in output_score:
                if e[3] != 9: # not a drum channel
                    e[6] = custom_render_patch
    
        if render_transpose_value != 0:
            output_score = TMIDIX.transpose_escore_notes(output_score, render_transpose_value)

        if render_transpose_to_C4:
            output_score = TMIDIX.transpose_escore_notes_to_pitch(output_score, 60) # C4 is MIDI pitch 60
        
        if render_align == "Start Times":
            output_score = TMIDIX.recalculate_score_timings(output_score)
            output_score = TMIDIX.align_escore_notes_to_bars(output_score)

        elif render_align == "Start Times and Durations":
            output_score = TMIDIX.recalculate_score_timings(output_score)
            output_score = TMIDIX.align_escore_notes_to_bars(output_score, trim_durations=True)
    
        elif render_align == "Start Times and Split Durations":
            output_score = TMIDIX.recalculate_score_timings(output_score)
            output_score = TMIDIX.align_escore_notes_to_bars(output_score, split_durations=True)

        if render_type == "Longest Repeating Phrase":
            zscore = TMIDIX.recalculate_score_timings(output_score)
            lrno_score = TMIDIX.escore_notes_lrno_pattern_fast(zscore)
    
            if lrno_score is not None:
                output_score = lrno_score
    
            else:
                output_score = TMIDIX.recalculate_score_timings(TMIDIX.escore_notes_middle(output_score, 50))
    
        if render_type == "Multi-Instrumental Summary":
            zscore = TMIDIX.recalculate_score_timings(output_score)
            c_escore_notes = TMIDIX.compress_patches_in_escore_notes_chords(zscore)
        
            if len(c_escore_notes) > 128:
                cmatrix = TMIDIX.escore_notes_to_image_matrix(c_escore_notes, filter_out_zero_rows=True, filter_out_duplicate_rows=True)
                smatrix = TPLOTS.square_image_matrix(cmatrix, num_pca_components=max(1, min(5, len(c_escore_notes) // 128)))
                output_score = TMIDIX.image_matrix_to_original_escore_notes(smatrix)
            
                for o in output_score:
                    o[1] *= 250
                    o[2] *= 250

        if render_output_as_solo_piano:
            output_score = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=(not render_remove_drums))
        
        if render_remove_drums and not render_output_as_solo_piano:
            output_score = TMIDIX.strip_drums_from_escore_notes(output_score)
          
        if render_type == "Solo Piano Summary":
            sp_escore_notes = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=False)
            zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
    
            if len(zscore) > 128:
            
                bmatrix = TMIDIX.escore_notes_to_binary_matrix(zscore)
                cmatrix = TMIDIX.compress_binary_matrix(bmatrix, only_compress_zeros=True)
                smatrix = TPLOTS.square_binary_matrix(cmatrix, interpolation_order=max(1, min(5, len(zscore) // 128)))
                output_score = TMIDIX.binary_matrix_to_original_escore_notes(smatrix)
    
                for o in output_score:
                    o[1] *= 200
                    o[2] *= 200

        print('Final adjustments complete.')
        print('=' * 70)
        
    # --- Saving Processed MIDI File ---
        # Save the transformed MIDI data
        SONG, patches, _ = TMIDIX.patch_enhanced_score_notes(output_score)
        
        # The underlying function mistakenly adds a '.mid' extension.
        # We must pass the path without the extension to compensate.
        path_without_ext = new_fn_path.rsplit('.mid', 1)[0]

        TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(SONG,
                                                  output_signature = 'Integrated-MIDI-Processor',
                                                  output_file_name = path_without_ext,
                                                  track_name='Processed Track',
                                                  list_of_MIDI_patches=patches
                                                  )
        midi_to_render_path = new_fn_path
    else:
        # If "Render as-is", use the original MIDI data
        with open(new_fn_path, 'wb') as f:
            f.write(fdata)
        midi_to_render_path = new_fn_path

    # --- Audio Rendering ---
    print('Rendering final audio...')

    # Select sample rate
    srate = int(render_sample_rate)
    
    # --- Conditional Rendering Logic ---
    if soundfont_bank == SYNTH_8_BIT_LABEL:
        print("Using 8-bit style synthesizer...")
        try:
            # Load the MIDI file with pretty_midi for manual synthesis
            midi_data_for_synth = pretty_midi.PrettyMIDI(midi_to_render_path)
            # Synthesize the waveform
            audio = synthesize_8bit_style(
                midi_data_for_synth,
                s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s, 
                s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth,
                s8bit_bass_boost_level,
                fs=srate
            )
            # Normalize and prepare for Gradio
            peak_val = np.max(np.abs(audio))
            if peak_val > 0:
                audio /= peak_val
            # Transpose from (2, N) to (N, 2) and convert to int16 for Gradio
            audio_out = (audio.T * 32767).astype(np.int16)
        except Exception as e:
            print(f"Error during 8-bit synthesis: {e}")
            return [None] * 7
    else:
        print(f"Using SoundFont: {soundfont_bank}")
        # Get the full path from the global dictionary
        soundfont_path = soundfonts_dict.get(soundfont_bank)

        # Select soundfont
        if not soundfont_path or not os.path.exists(soundfont_path):
            # Error handling in case the selected file is not found
            error_msg = f"SoundFont '{soundfont_bank}' not found!"
            print(f"ERROR: {error_msg}")
            # Fallback to the first available soundfont if possible
            if soundfonts_dict:
                fallback_key = list(soundfonts_dict.keys())[0]
                soundfont_path = soundfonts_dict[fallback_key]
                print(f"Falling back to '{fallback_key}'.")
            else:
                # If no soundfonts are available at all, raise an error
                raise gr.Error("No SoundFonts are available for rendering!")

        with open(midi_to_render_path, 'rb') as f:
            midi_file_content = f.read()

        audio_out = midi_to_colab_audio(midi_file_content, 
                                    soundfont_path=soundfont_path, # Use the dynamically found path
                                    sample_rate=srate,
                                    output_for_gradio=True
                                    )
    
    print('Audio rendering complete.')
    print('=' * 70)

    # --- Preparing Outputs for Gradio ---
    with open(midi_to_render_path, 'rb') as f:
        new_md5_hash = hashlib.md5(f.read()).hexdigest()
    output_plot = TPLOTS.plot_ms_SONG(output_score, plot_title=f"Score of {fn1}", return_plt=True)

    output_midi_summary = str(meta_data)
    
    return new_md5_hash, fn1, output_midi_summary, midi_to_render_path, (srate, audio_out), output_plot, song_description

# =================================================================================================
# === Main Application Logic ===
# =================================================================================================

def process_and_render_file(input_file, 
                            # --- Transcription params ---
                            enable_stereo_processing,
                            transcription_method,
                            onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool,
                            # --- MIDI rendering params ---
                            render_type, soundfont_bank, render_sample_rate,
                            render_with_sustains, merge_misaligned_notes, custom_render_patch, render_align,
                            render_transpose_value, render_transpose_to_C4, render_output_as_solo_piano, render_remove_drums,
                            # --- 8-bit synth params ---
                            s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s, 
                            s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth,
                            s8bit_bass_boost_level
                           ):
    """
    Main function to handle file processing. It determines the file type and calls the
    appropriate functions for transcription and/or rendering based on user selections.
    """
    start_time = reqtime.time()
    if input_file is None:
        # Return a list of updates to clear all output fields
        return [gr.update(value=None)] * 7

    # The input_file from gr.Audio(type="filepath") is now the direct path (a string),
    # not a temporary file object. We no longer need to access the .name attribute.
    input_file_path = input_file
    filename = os.path.basename(input_file_path)
    print(f"Processing new file: {filename}")
    
    try:
        audio_data, native_sample_rate = librosa.load(input_file_path, sr=None, mono=False)
    except Exception as e:
        raise gr.Error(f"Failed to load audio file: {e}")

    # --- Step 1: Check file type and transcribe if necessary ---
    if filename.lower().endswith(('.mid', '.midi', '.kar')):
        print("MIDI file detected. Proceeding directly to rendering.")
        midi_path_for_rendering = input_file_path
    else: #if filename.lower().endswith(('.wav', '.mp3'))
        print("Audio file detected. Starting transcription...")
        
        base_name = os.path.splitext(filename)[0]
        temp_dir = "output/temp_normalized"
        os.makedirs(temp_dir, exist_ok=True)

        # === STEREO PROCESSING LOGIC ===
        if enable_stereo_processing:
            if audio_data.ndim != 2 or audio_data.shape[0] != 2:
                print("Warning: Audio is not stereo or could not be loaded as stereo. Falling back to mono transcription.")
                enable_stereo_processing = False # Disable stereo processing if audio is not stereo

        if enable_stereo_processing:
            print("Stereo processing enabled. Splitting channels...")
            try:
                left_channel = audio_data[0]
                right_channel = audio_data[1]
                
                normalized_left = normalize_loudness(left_channel, native_sample_rate)
                normalized_right = normalize_loudness(right_channel, native_sample_rate)
                
                temp_left_wav_path = os.path.join(temp_dir, f"{base_name}_left.wav")
                temp_right_wav_path = os.path.join(temp_dir, f"{base_name}_right.wav")
                
                sf.write(temp_left_wav_path, normalized_left, native_sample_rate)
                sf.write(temp_right_wav_path, normalized_right, native_sample_rate)

                print(f"Saved left channel to: {temp_left_wav_path}")
                print(f"Saved right channel to: {temp_right_wav_path}")
                
                print("Transcribing left channel...")
                if transcription_method == "General Purpose":
                    midi_path_left = TranscribeGeneralAudio(temp_left_wav_path, onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool)
                else:
                    midi_path_left = TranscribePianoAudio(temp_left_wav_path)
                
                print("Transcribing right channel...")
                if transcription_method == "General Purpose":
                    midi_path_right = TranscribeGeneralAudio(temp_right_wav_path, onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool)
                else:
                    midi_path_right = TranscribePianoAudio(temp_right_wav_path)
                
                if midi_path_left and midi_path_right:
                    merged_midi_path = os.path.join(temp_dir, f"{base_name}_merged.mid")
                    midi_path_for_rendering = merge_midis(midi_path_left, midi_path_right, merged_midi_path)
                elif midi_path_left:
                    print("Warning: Right channel transcription failed. Using left channel only.")
                    midi_path_for_rendering = midi_path_left
                elif midi_path_right:
                    print("Warning: Left channel transcription failed. Using right channel only.")
                    midi_path_for_rendering = midi_path_right
                else:
                     raise gr.Error("Both left and right channel transcriptions failed.")

            except Exception as e:
                print(f"An error occurred during stereo processing: {e}")
                raise gr.Error(f"Stereo Processing Failed: {e}")
        else:
            print("Stereo processing disabled. Using standard mono transcription.")
            if audio_data.ndim == 1:
                mono_signal = audio_data
            else:
                mono_signal = np.mean(audio_data, axis=0)
                
            normalized_mono = normalize_loudness(mono_signal, native_sample_rate)

            temp_mono_wav_path = os.path.join(temp_dir, f"{base_name}_mono.wav")
            sf.write(temp_mono_wav_path, normalized_mono, native_sample_rate)
            
            try:
                if transcription_method == "General Purpose":
                    midi_path_for_rendering = TranscribeGeneralAudio(
                        temp_mono_wav_path, onset_thresh, frame_thresh, min_note_len, 
                        min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool
                    )
                else: # Piano-Specific
                    midi_path_for_rendering = TranscribePianoAudio(temp_mono_wav_path)
                analyze_midi_velocity(midi_path_for_rendering)
            except Exception as e:
                print(f"An error occurred during transcription: {e}")
                raise gr.Error(f"Transcription Failed: {e}")

    # --- Step 2: Render the MIDI file with selected options ---
    print(f"Proceeding to render MIDI file: {os.path.basename(midi_path_for_rendering)}")
    results = Render_MIDI(midi_path_for_rendering,
                          render_type, soundfont_bank, render_sample_rate,
                          render_with_sustains, merge_misaligned_notes, custom_render_patch, render_align,
                          render_transpose_value, render_transpose_to_C4, render_output_as_solo_piano, render_remove_drums,
                          s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s, 
                          s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth, s8bit_bass_boost_level)
    
    print(f'Total processing time: {(reqtime.time() - start_time):.2f} sec')
    print('*' * 70)
    
    return results

# =================================================================================================
# === Gradio UI Setup ===
# =================================================================================================

def update_ui_visibility(transcription_method, soundfont_choice):
    """
    Dynamically updates the visibility of UI components based on user selections.
    """
    is_general = (transcription_method == "General Purpose")
    is_8bit = (soundfont_choice == SYNTH_8_BIT_LABEL)

    return {
        general_transcription_settings: gr.update(visible=is_general),
        synth_8bit_settings: gr.update(visible=is_8bit),
    }

if __name__ == "__main__":
    # Initialize the app: download model (if needed) and apply patches
    # Set to False if you don't have 'requests' or 'tqdm' installed
    initialize_app()
    
    # --- Prepare soundfonts and make the map globally accessible ---
    global soundfonts_dict
    # On application start, download SoundFonts from Hugging Face Hub if they don't exist.
    soundfonts_dict = prepare_soundfonts()
    print(f"Found {len(soundfonts_dict)} local SoundFonts.")

    if not soundfonts_dict:
        print("\nWARNING: No SoundFonts were found or could be downloaded.")
        print("Rendering with SoundFonts will fail. Only the 8-bit synthesizer will be available.")

    app = gr.Blocks(theme=gr.themes.Base())
    
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Audio-to-MIDI & Advanced Renderer</h1>")
        gr.Markdown(
            "**Upload a Audio for transcription-then-rendering, or a MIDI for rendering-only.**\n\n"
            "This application combines piano audio transcription with a powerful MIDI transformation and rendering toolkit. "
            "Based on the work of [asigalov61](https://github.com/asigalov61)."
        )
        
        with gr.Row():
            waveform_options = gr.WaveformOptions(show_recording_waveform=False)
            with gr.Column(scale=1):
                # --- INPUT COLUMN ---
                gr.Markdown("## 1. Upload File")
                
                # Changed from gr.File to gr.Audio to allow for audio preview.
                # type="filepath" ensures the component returns a string path to the uploaded file.
                # The component will show a player for supported audio types (e.g., WAV, MP3).
                input_file = gr.Audio(
                    label="Input Audio or MIDI File",
                    type="filepath",
                    sources=["upload"], waveform_options=waveform_options
                )
                
                gr.Markdown("## 2. Configure Processing")

                # --- Transcription Method Selector ---
                transcription_method = gr.Radio(
                    ["General Purpose", "Piano-Specific"],
                    label="Audio Transcription Method",
                    value="General Purpose",
                    info="Choose 'General Purpose' for most music (vocals, etc.). Choose 'Piano-Specific' only for solo piano recordings."
                )
                
                # --- Stereo Processing Checkbox ---
                enable_stereo_processing = gr.Checkbox(
                    label="Enable Stereo Transcription",
                    value=False,
                    info="If checked, left/right audio channels are transcribed separately and merged. Doubles processing time."
                )

                with gr.Accordion("General Purpose Transcription Settings", open=True) as general_transcription_settings:
                    onset_threshold = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="On-set Threshold", info="Sensitivity for detecting note beginnings. Higher is stricter.")
                    frame_threshold = gr.Slider(0.0, 1.0, value=0.3, step=0.05, label="Frame Threshold", info="Sensitivity for detecting active notes. Higher is stricter.")
                    minimum_note_length = gr.Slider(10, 500, value=128, step=1, label="Minimum Note Length (ms)", info="Filters out very short, noisy notes.")
                    minimum_frequency = gr.Slider(0, 500, value=60, step=5, label="Minimum Frequency (Hz)", info="Ignores pitches below this frequency.")
                    maximum_frequency = gr.Slider(501, 10000, value=4000, step=10, label="Maximum Frequency (Hz)", info="Ignores pitches above this frequency.")
                    infer_onsets = gr.Checkbox(value=True, label="Infer Onsets (Boost Onsets)")
                    melodia_trick = gr.Checkbox(value=True, label="Melodia Trick (Contour Optimization)")
                    multiple_pitch_bends = gr.Checkbox(value=False, label="Allow Multiple Pitch Bends")

                # --- Rendering Settings ---
                render_type = gr.Radio(
                    ["Render as-is", "Custom render", "Extract melody", "Flip", "Reverse", "Repair Durations", "Repair Chords", "Remove Duplicate Pitches", "Longest Repeating Phrase", "Multi-Instrumental Summary", "Solo Piano Summary", "Add Drum Track"],
                    label="MIDI Transformation Render Type",
                    value="Render as-is",
                    info="Apply transformations to the MIDI before rendering. Select 'Render as-is' for basic rendering or other options for transformations."
                )
                
                # --- SoundFont Bank with 8-bit option ---
                # --- Dynamically create the list of choices ---
                soundfont_choices = [SYNTH_8_BIT_LABEL] + list(soundfonts_dict.keys())
                # Set a safe default value
                default_sf_choice = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7" if "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7" in soundfonts_dict else (soundfont_choices[0] if soundfont_choices else "")
                
                soundfont_bank = gr.Dropdown(
                    soundfont_choices,
                    label="SoundFont / Synthesizer",
                    value=default_sf_choice
                )

                render_sample_rate = gr.Radio(
                    ["16000", "32000", "44100"],
                    label="Audio Sample Rate",
                    value="44100"
                )

                # --- NEW: 8-bit Synthesizer Settings ---
                with gr.Accordion("8-bit Synthesizer Settings", open=False, visible=False) as synth_8bit_settings:
                    s8bit_waveform_type = gr.Dropdown(['Square', 'Sawtooth', 'Triangle'], value='Square', label="Waveform Type")
                    s8bit_envelope_type = gr.Dropdown(['Plucky (AD Envelope)', 'Sustained (Full Decay)'], value='Plucky (AD Envelope)', label="Envelope Type")
                    s8bit_decay_time_s = gr.Slider(0.01, 0.5, value=0.1, step=0.01, label="Decay Time (s)")
                    s8bit_pulse_width = gr.Slider(0.01, 0.99, value=0.5, step=0.01, label="Pulse Width")
                    s8bit_vibrato_rate = gr.Slider(0, 20, value=5, label="Vibrato Rate (Hz)")
                    s8bit_vibrato_depth = gr.Slider(0, 50, value=0, label="Vibrato Depth (Hz)")
                    s8bit_bass_boost_level = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="Bass Boost Level", info="Adjusts the volume of the sub-octave. 0 is off.")

                # --- Original Advanced Options (Now tied to Piano-Specific) ---
                with gr.Accordion("Advanced MIDI Rendering Options", open=False) as advanced_rendering_options:
                    render_with_sustains = gr.Checkbox(label="Apply sustain pedal effects (if present)", value=True)
                    render_output_as_solo_piano = gr.Checkbox(label="Convert to Solo Piano (Grand Piano patch)", value=False)
                    render_remove_drums = gr.Checkbox(label="Remove drum track", value=False)
                    render_transpose_to_C4 = gr.Checkbox(label="Transpose entire score to center around C4", value=False)
                    render_transpose_value = gr.Slider(-12, 12, value=0, step=1, label="Transpose (semitones)")
                    custom_render_patch = gr.Slider(-1, 127, value=-1, step=1, label="Force MIDI Patch (-1 to disable)")
                    merge_misaligned_notes = gr.Slider(-1, 127, value=-1, label="Time to merge notes in ms (-1 to disable)")
                    render_align = gr.Radio(
                        ["Do not align", "Start Times", "Start Times and Durations", "Start Times and Split Durations"],
                        label="Align notes to musical bars",
                        value="Do not align"
                    )

                submit_btn = gr.Button("Process and Render", variant="primary")
                
            with gr.Column(scale=2):
                # --- OUTPUT COLUMN ---
                gr.Markdown("## 3. Results")
                output_midi_title = gr.Textbox(label="MIDI Title")
                output_song_description = gr.Textbox(label="MIDI Description", lines=3)
                output_audio = gr.Audio(label="Rendered Audio Output", format="wav", waveform_options=waveform_options)
                output_plot = gr.Plot(label="MIDI Score Plot")
                with gr.Row():
                    output_midi = gr.File(label="Download Processed MIDI File", file_types=[".mid"])
                    output_midi_md5 = gr.Textbox(label="Output MIDI MD5 Hash")
                output_midi_summary = gr.Textbox(label="MIDI metadata summary", lines=4)

        # --- Define all input components for the click event ---
        all_inputs = [
            input_file, 
            enable_stereo_processing,
            transcription_method,
            onset_threshold, frame_threshold, minimum_note_length, minimum_frequency, maximum_frequency,
            infer_onsets, melodia_trick, multiple_pitch_bends,
            render_type, soundfont_bank, render_sample_rate,
            render_with_sustains, merge_misaligned_notes, custom_render_patch, render_align,
            render_transpose_value, render_transpose_to_C4, render_output_as_solo_piano, render_remove_drums,
            s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s, 
            s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth, s8bit_bass_boost_level
        ]
        all_outputs = [
            output_midi_md5, output_midi_title, output_midi_summary, 
            output_midi, output_audio, output_plot, output_song_description
        ]
        
        # --- Event Handling ---
        submit_btn.click(
            process_and_render_file, 
            inputs=all_inputs,
            outputs=all_outputs
        )
        
        # --- Listeners for dynamic UI updates ---
        transcription_method.change(
            fn=update_ui_visibility,
            inputs=[transcription_method, soundfont_bank],
            outputs=[general_transcription_settings, synth_8bit_settings]
        )
        soundfont_bank.change(
            fn=update_ui_visibility,
            inputs=[transcription_method, soundfont_bank],
            outputs=[general_transcription_settings, synth_8bit_settings]
        )

    # Launch the Gradio app
    app.queue().launch(inbrowser=True, debug=True)