File size: 54,494 Bytes
adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f 4299f7c adcbc9f 26312c5 4299f7c b934418 cd46d93 adcbc9f b934418 cd46d93 adcbc9f b114cd4 b934418 adcbc9f b934418 adcbc9f cd46d93 adcbc9f 53409b8 951967e 4543735 adcbc9f b780647 b114cd4 b780647 adcbc9f 3888ab7 adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f 80ab93c b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f 80ab93c adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f e94f552 adcbc9f 29090fa adcbc9f 6df655f adcbc9f 8b3de7f f076c55 2fd537d 8b3de7f e2a8b2b 8b3de7f 9ed302a 1424ad3 adcbc9f 80ab93c 1424ad3 adcbc9f 8d39a27 4543735 adcbc9f 2a2c4ee 660b28d adcbc9f 1424ad3 adcbc9f fe6e100 adcbc9f 4543735 2967e03 adcbc9f f076c55 2fd537d adcbc9f 2529f3d adcbc9f 8ea7c59 b114cd4 adcbc9f 4543735 4d34e84 b114cd4 6df655f abb25f7 cf7d19c 4d34e84 8d39a27 adcbc9f 410f581 6df655f adcbc9f 410f581 7485e9b ffdd828 d57ab6a 736f5d9 ecaa203 24957f5 9705956 c0f9cf2 8a5fb8f 1b6bdce d57ab6a c0f9cf2 884a083 8efd5f1 f2bdfe6 884a083 a967a4d adcbc9f 8d39a27 6df655f adcbc9f 598a5c4 adcbc9f 8b3de7f f0b4cee 8b3de7f adcbc9f b114cd4 9ed302a d46a61a 9ed302a adcbc9f 9ed302a d46a61a 9ed302a d46a61a 9ed302a 4299f7c 410f581 4801166 74f5b97 adcbc9f 406db87 74f5b97 adcbc9f 406db87 7a7d25f adcbc9f 410f581 cf187c8 adcbc9f 9a96351 74f5b97 9a96351 adcbc9f 9a96351 adcbc9f cf187c8 f4a049a adcbc9f 1424ad3 adcbc9f 410f581 e94f552 adcbc9f 9a96351 adcbc9f 9a96351 8d69657 9a96351 598a5c4 adcbc9f 67e09bb adcbc9f 57440b4 adcbc9f f7f27b0 adcbc9f f7f27b0 adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f f7f27b0 adcbc9f 3858291 adcbc9f fd58682 b114cd4 adcbc9f 2a2c4ee adcbc9f 6df655f 91d5e8a adcbc9f fd58682 8a1f411 b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c 8d39a27 adcbc9f 8d39a27 1309ddb adcbc9f b114cd4 adcbc9f 6df655f 3888ab7 adcbc9f 800d0d0 adcbc9f 800d0d0 adcbc9f 3888ab7 adcbc9f 8b3de7f 3888ab7 adcbc9f 80ab93c adcbc9f 1309ddb adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f 80ab93c adcbc9f b114cd4 adcbc9f 80ab93c adcbc9f c04453c adcbc9f d85cb0d adcbc9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 |
# =================================================================
#
# Merged and Integrated Script for Audio/MIDI Processing and Rendering (Stereo Enhanced)
#
# This script combines two functionalities:
# 1. Transcribing audio to MIDI using two methods:
# a) A general-purpose model (basic-pitch by Spotify).
# b) A model specialized for solo piano (ByteDance).
# - Includes stereo processing by splitting channels, transcribing independently, and merging MIDI.
# 2. Applying advanced transformations and re-rendering MIDI files using:
# a) Standard SoundFonts via FluidSynth (produces stereo audio).
# b) A custom 8-bit style synthesizer for a chiptune sound (updated for stereo output).
#
# The user can upload a Audio (e.g., WAV, MP3), or MIDI file.
# - If an audio file is uploaded, it is first transcribed to MIDI using the selected method.
# - The resulting MIDI (or an uploaded MIDI) can then be processed
# with various effects and rendered into audio.
#
#================================================================
# Original sources:
# https://huggingface.co/spaces/asigalov61/ByteDance-Solo-Piano-Audio-to-MIDI-Transcription
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Renderer
#================================================================
# Packages:
#
# sudo apt install fluidsynth
#
# =================================================================
# Requirements:
#
# pip install gradio torch pytz numpy scipy matplotlib networkx scikit-learn
# pip install piano_transcription_inference huggingface_hub
# pip install basic-pitch pretty_midi librosa soundfile
#
# =================================================================
# Core modules:
#
# git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#
# =================================================================
import os
import hashlib
import time as reqtime
import copy
import librosa
import pyloudnorm as pyln
import soundfile as sf
import torch
import gradio as gr
from src.piano_transcription.utils import initialize_app
from piano_transcription_inference import PianoTranscription, utilities, sample_rate as transcription_sample_rate
# --- Import core transcription and MIDI processing libraries ---
from src import TMIDIX, TPLOTS
from src import MIDI
from src.midi_to_colab_audio import midi_to_colab_audio
# --- Imports for General Purpose Transcription (basic-pitch) ---
import basic_pitch
from basic_pitch.inference import predict
from basic_pitch import ICASSP_2022_MODEL_PATH
# --- Imports for 8-bit Synthesizer & MIDI Merging ---
import pretty_midi
import numpy as np
from scipy import signal
# =================================================================================================
# === Hugging Face SoundFont Downloader ===
# =================================================================================================
from huggingface_hub import hf_hub_download
import glob
# --- Define a constant for the 8-bit synthesizer option ---
SYNTH_8_BIT_LABEL = "None (8-bit Synthesizer)"
def prepare_soundfonts():
"""
Ensures a default set of SoundFonts are downloaded, then scans the 'src/sf2'
directory recursively for all .sf2 files.
Returns a dictionary mapping a user-friendly name to its full file path, with
default soundfonts listed first in their specified order.
Downloads soundfont files from the specified Hugging Face Space repository
to a local 'src/sf2' directory if they don't already exist.
Returns a list of local paths to the soundfont files.
"""
SF2_REPO_ID = "asigalov61/Advanced-MIDI-Renderer"
SF2_DIR = "src/sf2"
# This list is now just for ensuring default files exist
# {"Super GM": 0, "Orpheus GM": 1, "Live HQ GM": 2, "Nice Strings + Orchestra": 3, "Real Choir": 4, "Super Game Boy": 5, "Proto Square": 6}
DEFAULT_SF2_FILENAMES = [
"SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
"Orpheus_18.06.2020.sf2",
"Live HQ Natural SoundFont GM.sf2",
"Nice-Strings-PlusOrchestra-v1.6.sf2",
"KBH-Real-Choir-V2.5.sf2",
"SuperGameBoy.sf2",
"ProtoSquare.sf2"
]
# Create the target directory if it doesn't exist
os.makedirs(SF2_DIR, exist_ok=True)
# --- Step 1: Ensure default SoundFonts are available ---
print("Checking for SoundFont files...")
for filename in DEFAULT_SF2_FILENAMES:
local_path = os.path.join(SF2_DIR, filename)
# Check if the file already exists locally to avoid re-downloading
if not os.path.exists(local_path):
print(f"Downloading '{filename}' from Hugging Face Hub...")
try:
# Use hf_hub_download to get the file
# It will be downloaded to the specified local directory
hf_hub_download(
repo_id=SF2_REPO_ID,
repo_type='space', # Specify that the repository is a Space
filename=f"{filename}", # The path to the file within the repository
local_dir=SF2_DIR,
# local_dir_use_symlinks=False # Copy file to the dir for a clean folder structure
)
print(f"'{filename}' downloaded successfully.")
except Exception as e:
print(f"Error downloading {filename}: {e}")
# If download fails, we might not be able to use this soundfont
# --- Step 2: Scan the entire directory for all .sf2 files ---
print(f"Scanning '{SF2_DIR}' for all .sf2 files...")
all_sfs_map = {}
# Use glob with recursive=True to find all .sf2 files in subdirectories
search_pattern = os.path.join(SF2_DIR, '**', '*.sf2')
for full_path in glob.glob(search_pattern, recursive=True):
# Create a user-friendly display name, including subfolder if it exists
relative_path = os.path.relpath(full_path, SF2_DIR)
display_name = os.path.splitext(relative_path)[0].replace("\\", "/") # Use forward slashes for consistency
all_sfs_map[display_name] = full_path
# --- Step 3: Create the final ordered dictionary based on priority ---
ordered_soundfont_map = {}
# Create display names for default files (filename without extension)
default_display_names = [os.path.splitext(f)[0] for f in DEFAULT_SF2_FILENAMES]
# Separate other files from the default ones
other_display_names = [name for name in all_sfs_map.keys() if name not in default_display_names]
other_display_names.sort() # Sort the rest alphabetically
# Add default soundfonts first, maintaining the order from DEFAULT_SF2_FILENAMES
for name in default_display_names:
if name in all_sfs_map: # Check if the file was actually found by the scanner
ordered_soundfont_map[name] = all_sfs_map[name]
# Add all other soundfonts after the default ones
for name in other_display_names:
ordered_soundfont_map[name] = all_sfs_map[name]
return ordered_soundfont_map
# =================================================================================================
# === 8-bit Style Synthesizer (Stereo Enabled) ===
# =================================================================================================
def synthesize_8bit_style(midi_data, waveform_type, envelope_type, decay_time_s, pulse_width, vibrato_rate, vibrato_depth, bass_boost_level, fs=44100):
"""
Synthesizes an 8-bit style audio waveform from a PrettyMIDI object.
This function generates waveforms manually instead of using a synthesizer like FluidSynth.
Includes an optional sub-octave bass booster with adjustable level.
Instruments are panned based on their order in the MIDI file.
Instrument 1 -> Left, Instrument 2 -> Right.
"""
total_duration = midi_data.get_end_time()
# Initialize a stereo waveform buffer (2 channels: Left, Right)
waveform = np.zeros((2, int(total_duration * fs) + fs))
num_instruments = len(midi_data.instruments)
for i, instrument in enumerate(midi_data.instruments):
# --- Panning Logic ---
# Default to center-panned mono
pan_l, pan_r = 0.707, 0.707
if num_instruments == 2:
if i == 0: # First instrument panned left
pan_l, pan_r = 1.0, 0.0
elif i == 1: # Second instrument panned right
pan_l, pan_r = 0.0, 1.0
elif num_instruments > 2:
if i == 0: pan_l, pan_r = 1.0, 0.0 # Left
elif i == 1: pan_l, pan_r = 0.0, 1.0 # Right
# Other instruments remain centered
for note in instrument.notes:
freq = pretty_midi.note_number_to_hz(note.pitch)
note_duration = note.end - note.start
num_samples = int(note_duration * fs)
if num_samples == 0:
continue
t = np.linspace(0., note_duration, num_samples, endpoint=False)
# --- Vibrato LFO ---
vibrato_lfo = vibrato_depth * np.sin(2 * np.pi * vibrato_rate * t)
# --- Waveform Generation (Main Oscillator) ---
if waveform_type == 'Square':
note_waveform = signal.square(2 * np.pi * (freq + vibrato_lfo) * t, duty=pulse_width)
elif waveform_type == 'Sawtooth':
note_waveform = signal.sawtooth(2 * np.pi * (freq + vibrato_lfo) * t)
elif waveform_type == 'Triangle':
note_waveform = signal.sawtooth(2 * np.pi * (freq + vibrato_lfo) * t, width=0.5)
# --- Bass Boost (Sub-Octave Oscillator) ---
if bass_boost_level > 0:
bass_freq = freq / 2.0
# Only add bass if the frequency is reasonably audible
if bass_freq > 20:
# Bass uses a simple square wave, no vibrato, for stability
bass_sub_waveform = signal.square(2 * np.pi * bass_freq * t, duty=0.5)
# Mix the main and bass waveforms.
# As bass level increases, slightly decrease main waveform volume to prevent clipping.
main_level = 1.0 - (0.5 * bass_boost_level)
note_waveform = (note_waveform * main_level) + (bass_sub_waveform * bass_boost_level)
# --- ADSR Envelope ---
start_amp = note.velocity / 127.0
envelope = np.zeros(num_samples)
if envelope_type == 'Plucky (AD Envelope)' and num_samples > 0:
attack_time_s = 0.005
attack_samples = min(int(attack_time_s * fs), num_samples)
decay_samples = min(int(decay_time_s * fs), num_samples - attack_samples)
envelope[:attack_samples] = np.linspace(0, start_amp, attack_samples)
if decay_samples > 0:
envelope[attack_samples:attack_samples+decay_samples] = np.linspace(start_amp, 0, decay_samples)
elif envelope_type == 'Sustained (Full Decay)' and num_samples > 0:
envelope = np.linspace(start_amp, 0, num_samples)
# Apply envelope to the (potentially combined) waveform
note_waveform *= envelope
start_sample = int(note.start * fs)
end_sample = start_sample + num_samples
if end_sample > waveform.shape[1]:
end_sample = waveform.shape[1]
note_waveform = note_waveform[:end_sample-start_sample]
# Add the mono note waveform to the stereo buffer with panning
waveform[0, start_sample:end_sample] += note_waveform * pan_l
waveform[1, start_sample:end_sample] += note_waveform * pan_r
return waveform # Returns a (2, N) numpy array
def analyze_midi_velocity(midi_path):
midi = pretty_midi.PrettyMIDI(midi_path)
all_velocities = []
print(f"Analyzing velocity for MIDI: {midi_path}")
for i, instrument in enumerate(midi.instruments):
velocities = [note.velocity for note in instrument.notes]
all_velocities.extend(velocities)
if velocities:
print(f"Instrument {i} ({instrument.name}):")
print(f" Notes count: {len(velocities)}")
print(f" Velocity min: {min(velocities)}")
print(f" Velocity max: {max(velocities)}")
print(f" Velocity mean: {np.mean(velocities):.2f}")
else:
print(f"Instrument {i} ({instrument.name}): no notes found.")
if all_velocities:
print("\nOverall MIDI velocity stats:")
print(f" Total notes: {len(all_velocities)}")
print(f" Velocity min: {min(all_velocities)}")
print(f" Velocity max: {max(all_velocities)}")
print(f" Velocity mean: {np.mean(all_velocities):.2f}")
else:
print("No notes found in this MIDI.")
def scale_instrument_velocity(instrument, scale=0.8):
for note in instrument.notes:
note.velocity = max(1, min(127, int(note.velocity * scale)))
def normalize_loudness(audio_data, sample_rate, target_lufs=-23.0):
"""
Normalizes the audio data to a target integrated loudness (LUFS).
This provides more consistent perceived volume than peak normalization.
Args:
audio_data (np.ndarray): The audio signal.
sample_rate (int): The sample rate of the audio.
target_lufs (float): The target loudness in LUFS. Defaults to -23.0,
a common standard for broadcast.
Returns:
np.ndarray: The loudness-normalized audio data.
"""
try:
# 1. Measure the integrated loudness of the input audio
meter = pyln.Meter(sample_rate) # create meter
loudness = meter.integrated_loudness(audio_data)
# 2. Calculate the gain needed to reach the target loudness
# The gain is applied in the linear domain, so we convert from dB
loudness_gain_db = target_lufs - loudness
loudness_gain_linear = 10.0 ** (loudness_gain_db / 20.0)
# 3. Apply the gain
normalized_audio = audio_data * loudness_gain_linear
# 4. Final safety check: peak normalize to prevent clipping, just in case
# the loudness normalization results in peaks > 1.0
peak_val = np.max(np.abs(normalized_audio))
if peak_val > 1.0:
normalized_audio /= peak_val
print(f"Warning: Loudness normalization resulted in clipping. Audio was peak-normalized as a safeguard.")
print(f"Audio normalized from {loudness:.2f} LUFS to target {target_lufs} LUFS.")
return normalized_audio
except Exception as e:
print(f"Loudness normalization failed: {e}. Falling back to original audio.")
return audio_data
# =================================================================================================
# === MIDI Merging Function ===
# =================================================================================================
def merge_midis(midi_path_left, midi_path_right, output_path):
"""
Merges two MIDI files into a single MIDI file. This robust version iterates
through ALL instruments in both MIDI files, ensuring no data is lost if the
source files are multi-instrumental.
It applies hard-left panning (Pan=0) to every instrument from the left MIDI
and hard-right panning (Pan=127) to every instrument from the right MIDI.
"""
try:
analyze_midi_velocity(midi_path_left)
analyze_midi_velocity(midi_path_right)
midi_left = pretty_midi.PrettyMIDI(midi_path_left)
midi_right = pretty_midi.PrettyMIDI(midi_path_right)
merged_midi = pretty_midi.PrettyMIDI()
# --- Process ALL instruments from the left channel MIDI ---
if midi_left.instruments:
print(f"Found {len(midi_left.instruments)} instrument(s) in the left channel MIDI.")
# Use a loop to iterate through every instrument
for instrument in midi_left.instruments:
scale_instrument_velocity(instrument, scale=0.8)
# To avoid confusion, we can prefix the instrument name
instrument.name = f"Left - {instrument.name if instrument.name else 'Instrument'}"
# Create and add the Pan Left control change
# Create a Control Change event for Pan (controller number 10).
# Set its value to 0 for hard left panning.
# Add it at the very beginning of the track (time=0.0).
pan_left = pretty_midi.ControlChange(number=10, value=0, time=0.0)
# Use insert() to ensure the pan event is the very first one
instrument.control_changes.insert(0, pan_left)
# Append the fully processed instrument to the merged MIDI
merged_midi.instruments.append(instrument)
# --- Process ALL instruments from the right channel MIDI ---
if midi_right.instruments:
print(f"Found {len(midi_right.instruments)} instrument(s) in the right channel MIDI.")
# Use a loop here as well
for instrument in midi_right.instruments:
scale_instrument_velocity(instrument, scale=0.8)
instrument.name = f"Right - {instrument.name if instrument.name else 'Instrument'}"
# Create and add the Pan Right control change
# Create a Control Change event for Pan (controller number 10).
# Set its value to 127 for hard right panning.
# Add it at the very beginning of the track (time=0.0).
pan_right = pretty_midi.ControlChange(number=10, value=127, time=0.0)
instrument.control_changes.insert(0, pan_right)
merged_midi.instruments.append(instrument)
merged_midi.write(output_path)
print(f"Successfully merged all instruments and panned into '{os.path.basename(output_path)}'")
analyze_midi_velocity(output_path)
return output_path
except Exception as e:
print(f"Error merging MIDI files: {e}")
# Fallback logic remains the same
if os.path.exists(midi_path_left):
print("Fallback: Using only the left channel MIDI.")
return midi_path_left
return None
# =================================================================================================
# === Stage 1: Audio to MIDI Transcription Functions ===
# =================================================================================================
def TranscribePianoAudio(input_file):
"""
Transcribes a WAV or MP3 audio file of a SOLO PIANO performance into a MIDI file.
This uses the ByteDance model.
Args:
input_file_path (str): The path to the input audio file.
Returns:
str: The file path of the generated MIDI file.
"""
print('=' * 70)
print('STAGE 1: Starting Piano-Specific Transcription')
print('=' * 70)
# Generate a unique output filename for the MIDI
fn = os.path.basename(input_file)
fn1 = fn.split('.')[0]
# Use os.path.join to create a platform-independent directory path
output_dir = os.path.join("output", "transcribed_piano_")
out_mid_path = os.path.join(output_dir, fn1 + '.mid')
# Check for the directory's existence and create it if necessary
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print('-' * 70)
print(f'Input file name: {fn}')
print(f'Output MIDI path: {out_mid_path}')
print('-' * 70)
# Load audio using the utility function
print('Loading audio...')
(audio, _) = utilities.load_audio(input_file, sr=transcription_sample_rate, mono=True)
print('Audio loaded successfully.')
print('-' * 70)
# Initialize the transcription model
# Use 'cuda' if a GPU is available and configured, otherwise 'cpu'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Loading transcriptor model... device= {device}')
transcriptor = PianoTranscription(device=device, checkpoint_path="src/models/CRNN_note_F1=0.9677_pedal_F1=0.9186.pth")
print('Transcriptor loaded.')
print('-' * 70)
# Perform transcription
print('Transcribing audio to MIDI (Piano-Specific)...')
# This function call saves the MIDI file to the specified path
transcriptor.transcribe(audio, out_mid_path)
print('Piano transcription complete.')
print('=' * 70)
# Return the path to the newly created MIDI file
return out_mid_path
def TranscribeGeneralAudio(input_file, onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool):
"""
Transcribes a general audio file into a MIDI file using basic-pitch.
This is suitable for various instruments and vocals.
"""
print('=' * 70)
print('STAGE 1: Starting General Purpose Transcription')
print('=' * 70)
fn = os.path.basename(input_file)
fn1 = fn.split('.')[0]
output_dir = os.path.join("output", "transcribed_general_")
out_mid_path = os.path.join(output_dir, fn1 + '.mid')
os.makedirs(output_dir, exist_ok=True)
print(f'Input file: {fn}\nOutput MIDI: {out_mid_path}')
# --- Perform transcription using basic-pitch ---
print('Transcribing audio to MIDI (General Purpose)...')
# The predict function handles audio loading internally
model_output, midi_data, note_events = basic_pitch.inference.predict(
audio_path=input_file,
model_or_model_path=ICASSP_2022_MODEL_PATH,
onset_threshold=onset_thresh,
frame_threshold=frame_thresh,
minimum_note_length=min_note_len,
minimum_frequency=min_freq,
maximum_frequency=max_freq,
infer_onsets=infer_onsets_bool,
melodia_trick=melodia_trick_bool,
multiple_pitch_bends=multiple_bends_bool
)
# --- Save the MIDI file ---
midi_data.write(out_mid_path)
print('General transcription complete.')
print('=' * 70)
return out_mid_path
# =================================================================================================
# === Stage 2: MIDI Transformation and Rendering Function ===
# =================================================================================================
def Render_MIDI(input_midi_path,
render_type,
soundfont_bank,
render_sample_rate,
render_with_sustains,
merge_misaligned_notes,
custom_render_patch,
render_align,
render_transpose_value,
render_transpose_to_C4,
render_output_as_solo_piano,
render_remove_drums,
# --- 8-bit synth params ---
s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s,
s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth,
s8bit_bass_boost_level
):
"""
Processes and renders a MIDI file according to user-defined settings.
Can render using SoundFonts or a custom 8-bit synthesizer.
Args:
input_midi_path (str): The path to the input MIDI file.
All other arguments are rendering options from the Gradio UI.
Returns:
A tuple containing all the output elements for the Gradio UI.
"""
print('*' * 70)
print('STAGE 2: Starting MIDI Rendering')
print('*' * 70)
# --- File and Settings Setup ---
fn = os.path.basename(input_midi_path)
fn1 = fn.split('.')[0]
# Use os.path.join to create a platform-independent directory path
output_dir = os.path.join("output", "rendered_midi")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Now, join the clean directory path with the filename
new_fn_path = os.path.join(output_dir, fn1 + '_rendered.mid')
try:
with open(input_midi_path, 'rb') as f:
fdata = f.read()
input_midi_md5hash = hashlib.md5(fdata).hexdigest()
except FileNotFoundError:
# Handle cases where the input file might not exist
print(f"Error: Input MIDI file not found at {input_midi_path}")
return [None] * 7 # Return empty values for all outputs
print('=' * 70)
print('Requested settings:')
print(f'Input MIDI file name: {fn}')
print(f'Input MIDI md5 hash: {input_midi_md5hash}')
print('-' * 70)
print(f'Render type: {render_type}')
print(f'Soundfont bank: {soundfont_bank}')
print(f'Audio render sample rate: {render_sample_rate}')
# ... (add other print statements for settings if needed)
print('=' * 70)
# --- MIDI Processing using TMIDIX ---
print('Processing MIDI... Please wait...')
raw_score = MIDI.midi2single_track_ms_score(fdata)
escore = TMIDIX.advanced_score_processor(raw_score,
return_enhanced_score_notes=True,
apply_sustain=render_with_sustains
)[0]
# Handle cases where the MIDI might not contain any notes
if not escore:
print("Warning: MIDI file contains no processable notes.")
return ("N/A", fn1, "MIDI file contains no notes.",None, None, None, "No notes found.")
# This line will now work correctly because merge_misaligned_notes is guaranteed to be an integer.
if merge_misaligned_notes > 0:
escore = TMIDIX.merge_escore_notes(escore, merge_threshold=merge_misaligned_notes)
escore = TMIDIX.augment_enhanced_score_notes(escore, timings_divider=1)
first_note_index = [e[0] for e in raw_score[1]].index('note')
cscore = TMIDIX.chordify_score([1000, escore])
meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]
aux_escore_notes = TMIDIX.augment_enhanced_score_notes(escore, sort_drums_last=True)
song_description = TMIDIX.escore_notes_to_text_description(aux_escore_notes)
print('Done!')
print('=' * 70)
print('Input MIDI metadata:', meta_data[:5])
print('=' * 70)
print('Input MIDI song description:', song_description)
print('=' * 70)
print('Processing...Please wait...')
# A deep copy of the score to be modified
output_score = copy.deepcopy(escore)
# Apply transformations based on render_type
if render_type == "Extract melody":
output_score = TMIDIX.add_melody_to_enhanced_score_notes(escore, return_melody=True)
output_score = TMIDIX.recalculate_score_timings(output_score)
elif render_type == "Flip":
output_score = TMIDIX.flip_enhanced_score_notes(escore)
elif render_type == "Reverse":
output_score = TMIDIX.reverse_enhanced_score_notes(escore)
elif render_type == 'Repair Durations':
output_score = TMIDIX.fix_escore_notes_durations(escore, min_notes_gap=0)
elif render_type == 'Repair Chords':
fixed_cscore = TMIDIX.advanced_check_and_fix_chords_in_chordified_score(cscore)[0]
output_score = TMIDIX.flatten(fixed_cscore)
elif render_type == 'Remove Duplicate Pitches':
output_score = TMIDIX.remove_duplicate_pitches_from_escore_notes(escore)
elif render_type == "Add Drum Track":
nd_escore = [e for e in escore if e[3] != 9]
nd_escore = TMIDIX.augment_enhanced_score_notes(nd_escore)
output_score = TMIDIX.advanced_add_drums_to_escore_notes(nd_escore)
for e in output_score:
e[1] *= 16
e[2] *= 16
print('MIDI processing complete.')
print('=' * 70)
# --- Final Processing and Patching ---
if render_type != "Render as-is":
print('Applying final adjustments (transpose, align, patch)...')
if custom_render_patch != -1: # -1 indicates no change
for e in output_score:
if e[3] != 9: # not a drum channel
e[6] = custom_render_patch
if render_transpose_value != 0:
output_score = TMIDIX.transpose_escore_notes(output_score, render_transpose_value)
if render_transpose_to_C4:
output_score = TMIDIX.transpose_escore_notes_to_pitch(output_score, 60) # C4 is MIDI pitch 60
if render_align == "Start Times":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score)
elif render_align == "Start Times and Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, trim_durations=True)
elif render_align == "Start Times and Split Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, split_durations=True)
if render_type == "Longest Repeating Phrase":
zscore = TMIDIX.recalculate_score_timings(output_score)
lrno_score = TMIDIX.escore_notes_lrno_pattern_fast(zscore)
if lrno_score is not None:
output_score = lrno_score
else:
output_score = TMIDIX.recalculate_score_timings(TMIDIX.escore_notes_middle(output_score, 50))
if render_type == "Multi-Instrumental Summary":
zscore = TMIDIX.recalculate_score_timings(output_score)
c_escore_notes = TMIDIX.compress_patches_in_escore_notes_chords(zscore)
if len(c_escore_notes) > 128:
cmatrix = TMIDIX.escore_notes_to_image_matrix(c_escore_notes, filter_out_zero_rows=True, filter_out_duplicate_rows=True)
smatrix = TPLOTS.square_image_matrix(cmatrix, num_pca_components=max(1, min(5, len(c_escore_notes) // 128)))
output_score = TMIDIX.image_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 250
o[2] *= 250
if render_output_as_solo_piano:
output_score = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=(not render_remove_drums))
if render_remove_drums and not render_output_as_solo_piano:
output_score = TMIDIX.strip_drums_from_escore_notes(output_score)
if render_type == "Solo Piano Summary":
sp_escore_notes = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=False)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
if len(zscore) > 128:
bmatrix = TMIDIX.escore_notes_to_binary_matrix(zscore)
cmatrix = TMIDIX.compress_binary_matrix(bmatrix, only_compress_zeros=True)
smatrix = TPLOTS.square_binary_matrix(cmatrix, interpolation_order=max(1, min(5, len(zscore) // 128)))
output_score = TMIDIX.binary_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 200
o[2] *= 200
print('Final adjustments complete.')
print('=' * 70)
# --- Saving Processed MIDI File ---
# Save the transformed MIDI data
SONG, patches, _ = TMIDIX.patch_enhanced_score_notes(output_score)
# The underlying function mistakenly adds a '.mid' extension.
# We must pass the path without the extension to compensate.
path_without_ext = new_fn_path.rsplit('.mid', 1)[0]
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(SONG,
output_signature = 'Integrated-MIDI-Processor',
output_file_name = path_without_ext,
track_name='Processed Track',
list_of_MIDI_patches=patches
)
midi_to_render_path = new_fn_path
else:
# If "Render as-is", use the original MIDI data
with open(new_fn_path, 'wb') as f:
f.write(fdata)
midi_to_render_path = new_fn_path
# --- Audio Rendering ---
print('Rendering final audio...')
# Select sample rate
srate = int(render_sample_rate)
# --- Conditional Rendering Logic ---
if soundfont_bank == SYNTH_8_BIT_LABEL:
print("Using 8-bit style synthesizer...")
try:
# Load the MIDI file with pretty_midi for manual synthesis
midi_data_for_synth = pretty_midi.PrettyMIDI(midi_to_render_path)
# Synthesize the waveform
audio = synthesize_8bit_style(
midi_data_for_synth,
s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s,
s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth,
s8bit_bass_boost_level,
fs=srate
)
# Normalize and prepare for Gradio
peak_val = np.max(np.abs(audio))
if peak_val > 0:
audio /= peak_val
# Transpose from (2, N) to (N, 2) and convert to int16 for Gradio
audio_out = (audio.T * 32767).astype(np.int16)
except Exception as e:
print(f"Error during 8-bit synthesis: {e}")
return [None] * 7
else:
print(f"Using SoundFont: {soundfont_bank}")
# Get the full path from the global dictionary
soundfont_path = soundfonts_dict.get(soundfont_bank)
# Select soundfont
if not soundfont_path or not os.path.exists(soundfont_path):
# Error handling in case the selected file is not found
error_msg = f"SoundFont '{soundfont_bank}' not found!"
print(f"ERROR: {error_msg}")
# Fallback to the first available soundfont if possible
if soundfonts_dict:
fallback_key = list(soundfonts_dict.keys())[0]
soundfont_path = soundfonts_dict[fallback_key]
print(f"Falling back to '{fallback_key}'.")
else:
# If no soundfonts are available at all, raise an error
raise gr.Error("No SoundFonts are available for rendering!")
with open(midi_to_render_path, 'rb') as f:
midi_file_content = f.read()
audio_out = midi_to_colab_audio(midi_file_content,
soundfont_path=soundfont_path, # Use the dynamically found path
sample_rate=srate,
output_for_gradio=True
)
print('Audio rendering complete.')
print('=' * 70)
# --- Preparing Outputs for Gradio ---
with open(midi_to_render_path, 'rb') as f:
new_md5_hash = hashlib.md5(f.read()).hexdigest()
output_plot = TPLOTS.plot_ms_SONG(output_score, plot_title=f"Score of {fn1}", return_plt=True)
output_midi_summary = str(meta_data)
return new_md5_hash, fn1, output_midi_summary, midi_to_render_path, (srate, audio_out), output_plot, song_description
# =================================================================================================
# === Main Application Logic ===
# =================================================================================================
def process_and_render_file(input_file,
# --- Transcription params ---
enable_stereo_processing,
transcription_method,
onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool,
# --- MIDI rendering params ---
render_type, soundfont_bank, render_sample_rate,
render_with_sustains, merge_misaligned_notes, custom_render_patch, render_align,
render_transpose_value, render_transpose_to_C4, render_output_as_solo_piano, render_remove_drums,
# --- 8-bit synth params ---
s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s,
s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth,
s8bit_bass_boost_level
):
"""
Main function to handle file processing. It determines the file type and calls the
appropriate functions for transcription and/or rendering based on user selections.
"""
start_time = reqtime.time()
if input_file is None:
# Return a list of updates to clear all output fields
return [gr.update(value=None)] * 7
# The input_file from gr.Audio(type="filepath") is now the direct path (a string),
# not a temporary file object. We no longer need to access the .name attribute.
input_file_path = input_file
filename = os.path.basename(input_file_path)
print(f"Processing new file: {filename}")
try:
audio_data, native_sample_rate = librosa.load(input_file_path, sr=None, mono=False)
except Exception as e:
raise gr.Error(f"Failed to load audio file: {e}")
# --- Step 1: Check file type and transcribe if necessary ---
if filename.lower().endswith(('.mid', '.midi', '.kar')):
print("MIDI file detected. Proceeding directly to rendering.")
midi_path_for_rendering = input_file_path
else: #if filename.lower().endswith(('.wav', '.mp3'))
print("Audio file detected. Starting transcription...")
base_name = os.path.splitext(filename)[0]
temp_dir = "output/temp_normalized"
os.makedirs(temp_dir, exist_ok=True)
# === STEREO PROCESSING LOGIC ===
if enable_stereo_processing:
if audio_data.ndim != 2 or audio_data.shape[0] != 2:
print("Warning: Audio is not stereo or could not be loaded as stereo. Falling back to mono transcription.")
enable_stereo_processing = False # Disable stereo processing if audio is not stereo
if enable_stereo_processing:
print("Stereo processing enabled. Splitting channels...")
try:
left_channel = audio_data[0]
right_channel = audio_data[1]
normalized_left = normalize_loudness(left_channel, native_sample_rate)
normalized_right = normalize_loudness(right_channel, native_sample_rate)
temp_left_wav_path = os.path.join(temp_dir, f"{base_name}_left.wav")
temp_right_wav_path = os.path.join(temp_dir, f"{base_name}_right.wav")
sf.write(temp_left_wav_path, normalized_left, native_sample_rate)
sf.write(temp_right_wav_path, normalized_right, native_sample_rate)
print(f"Saved left channel to: {temp_left_wav_path}")
print(f"Saved right channel to: {temp_right_wav_path}")
print("Transcribing left channel...")
if transcription_method == "General Purpose":
midi_path_left = TranscribeGeneralAudio(temp_left_wav_path, onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool)
else:
midi_path_left = TranscribePianoAudio(temp_left_wav_path)
print("Transcribing right channel...")
if transcription_method == "General Purpose":
midi_path_right = TranscribeGeneralAudio(temp_right_wav_path, onset_thresh, frame_thresh, min_note_len, min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool)
else:
midi_path_right = TranscribePianoAudio(temp_right_wav_path)
if midi_path_left and midi_path_right:
merged_midi_path = os.path.join(temp_dir, f"{base_name}_merged.mid")
midi_path_for_rendering = merge_midis(midi_path_left, midi_path_right, merged_midi_path)
elif midi_path_left:
print("Warning: Right channel transcription failed. Using left channel only.")
midi_path_for_rendering = midi_path_left
elif midi_path_right:
print("Warning: Left channel transcription failed. Using right channel only.")
midi_path_for_rendering = midi_path_right
else:
raise gr.Error("Both left and right channel transcriptions failed.")
except Exception as e:
print(f"An error occurred during stereo processing: {e}")
raise gr.Error(f"Stereo Processing Failed: {e}")
else:
print("Stereo processing disabled. Using standard mono transcription.")
if audio_data.ndim == 1:
mono_signal = audio_data
else:
mono_signal = np.mean(audio_data, axis=0)
normalized_mono = normalize_loudness(mono_signal, native_sample_rate)
temp_mono_wav_path = os.path.join(temp_dir, f"{base_name}_mono.wav")
sf.write(temp_mono_wav_path, normalized_mono, native_sample_rate)
try:
if transcription_method == "General Purpose":
midi_path_for_rendering = TranscribeGeneralAudio(
temp_mono_wav_path, onset_thresh, frame_thresh, min_note_len,
min_freq, max_freq, infer_onsets_bool, melodia_trick_bool, multiple_bends_bool
)
else: # Piano-Specific
midi_path_for_rendering = TranscribePianoAudio(temp_mono_wav_path)
analyze_midi_velocity(midi_path_for_rendering)
except Exception as e:
print(f"An error occurred during transcription: {e}")
raise gr.Error(f"Transcription Failed: {e}")
# --- Step 2: Render the MIDI file with selected options ---
print(f"Proceeding to render MIDI file: {os.path.basename(midi_path_for_rendering)}")
results = Render_MIDI(midi_path_for_rendering,
render_type, soundfont_bank, render_sample_rate,
render_with_sustains, merge_misaligned_notes, custom_render_patch, render_align,
render_transpose_value, render_transpose_to_C4, render_output_as_solo_piano, render_remove_drums,
s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s,
s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth, s8bit_bass_boost_level)
print(f'Total processing time: {(reqtime.time() - start_time):.2f} sec')
print('*' * 70)
return results
# =================================================================================================
# === Gradio UI Setup ===
# =================================================================================================
def update_ui_visibility(transcription_method, soundfont_choice):
"""
Dynamically updates the visibility of UI components based on user selections.
"""
is_general = (transcription_method == "General Purpose")
is_8bit = (soundfont_choice == SYNTH_8_BIT_LABEL)
return {
general_transcription_settings: gr.update(visible=is_general),
synth_8bit_settings: gr.update(visible=is_8bit),
}
if __name__ == "__main__":
# Initialize the app: download model (if needed) and apply patches
# Set to False if you don't have 'requests' or 'tqdm' installed
initialize_app()
# --- Prepare soundfonts and make the map globally accessible ---
global soundfonts_dict
# On application start, download SoundFonts from Hugging Face Hub if they don't exist.
soundfonts_dict = prepare_soundfonts()
print(f"Found {len(soundfonts_dict)} local SoundFonts.")
if not soundfonts_dict:
print("\nWARNING: No SoundFonts were found or could be downloaded.")
print("Rendering with SoundFonts will fail. Only the 8-bit synthesizer will be available.")
app = gr.Blocks(theme=gr.themes.Base())
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Audio-to-MIDI & Advanced Renderer</h1>")
gr.Markdown(
"**Upload a Audio for transcription-then-rendering, or a MIDI for rendering-only.**\n\n"
"This application combines piano audio transcription with a powerful MIDI transformation and rendering toolkit. "
"Based on the work of [asigalov61](https://github.com/asigalov61)."
)
with gr.Row():
waveform_options = gr.WaveformOptions(show_recording_waveform=False)
with gr.Column(scale=1):
# --- INPUT COLUMN ---
gr.Markdown("## 1. Upload File")
# Changed from gr.File to gr.Audio to allow for audio preview.
# type="filepath" ensures the component returns a string path to the uploaded file.
# The component will show a player for supported audio types (e.g., WAV, MP3).
input_file = gr.Audio(
label="Input Audio or MIDI File",
type="filepath",
sources=["upload"], waveform_options=waveform_options
)
gr.Markdown("## 2. Configure Processing")
# --- Transcription Method Selector ---
transcription_method = gr.Radio(
["General Purpose", "Piano-Specific"],
label="Audio Transcription Method",
value="General Purpose",
info="Choose 'General Purpose' for most music (vocals, etc.). Choose 'Piano-Specific' only for solo piano recordings."
)
# --- Stereo Processing Checkbox ---
enable_stereo_processing = gr.Checkbox(
label="Enable Stereo Transcription",
value=False,
info="If checked, left/right audio channels are transcribed separately and merged. Doubles processing time."
)
with gr.Accordion("General Purpose Transcription Settings", open=True) as general_transcription_settings:
onset_threshold = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="On-set Threshold", info="Sensitivity for detecting note beginnings. Higher is stricter.")
frame_threshold = gr.Slider(0.0, 1.0, value=0.3, step=0.05, label="Frame Threshold", info="Sensitivity for detecting active notes. Higher is stricter.")
minimum_note_length = gr.Slider(10, 500, value=128, step=1, label="Minimum Note Length (ms)", info="Filters out very short, noisy notes.")
minimum_frequency = gr.Slider(0, 500, value=60, step=5, label="Minimum Frequency (Hz)", info="Ignores pitches below this frequency.")
maximum_frequency = gr.Slider(501, 10000, value=4000, step=10, label="Maximum Frequency (Hz)", info="Ignores pitches above this frequency.")
infer_onsets = gr.Checkbox(value=True, label="Infer Onsets (Boost Onsets)")
melodia_trick = gr.Checkbox(value=True, label="Melodia Trick (Contour Optimization)")
multiple_pitch_bends = gr.Checkbox(value=False, label="Allow Multiple Pitch Bends")
# --- Rendering Settings ---
render_type = gr.Radio(
["Render as-is", "Custom render", "Extract melody", "Flip", "Reverse", "Repair Durations", "Repair Chords", "Remove Duplicate Pitches", "Longest Repeating Phrase", "Multi-Instrumental Summary", "Solo Piano Summary", "Add Drum Track"],
label="MIDI Transformation Render Type",
value="Render as-is",
info="Apply transformations to the MIDI before rendering. Select 'Render as-is' for basic rendering or other options for transformations."
)
# --- SoundFont Bank with 8-bit option ---
# --- Dynamically create the list of choices ---
soundfont_choices = [SYNTH_8_BIT_LABEL] + list(soundfonts_dict.keys())
# Set a safe default value
default_sf_choice = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7" if "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7" in soundfonts_dict else (soundfont_choices[0] if soundfont_choices else "")
soundfont_bank = gr.Dropdown(
soundfont_choices,
label="SoundFont / Synthesizer",
value=default_sf_choice
)
render_sample_rate = gr.Radio(
["16000", "32000", "44100"],
label="Audio Sample Rate",
value="44100"
)
# --- NEW: 8-bit Synthesizer Settings ---
with gr.Accordion("8-bit Synthesizer Settings", open=False, visible=False) as synth_8bit_settings:
s8bit_waveform_type = gr.Dropdown(['Square', 'Sawtooth', 'Triangle'], value='Square', label="Waveform Type")
s8bit_envelope_type = gr.Dropdown(['Plucky (AD Envelope)', 'Sustained (Full Decay)'], value='Plucky (AD Envelope)', label="Envelope Type")
s8bit_decay_time_s = gr.Slider(0.01, 0.5, value=0.1, step=0.01, label="Decay Time (s)")
s8bit_pulse_width = gr.Slider(0.01, 0.99, value=0.5, step=0.01, label="Pulse Width")
s8bit_vibrato_rate = gr.Slider(0, 20, value=5, label="Vibrato Rate (Hz)")
s8bit_vibrato_depth = gr.Slider(0, 50, value=0, label="Vibrato Depth (Hz)")
s8bit_bass_boost_level = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="Bass Boost Level", info="Adjusts the volume of the sub-octave. 0 is off.")
# --- Original Advanced Options (Now tied to Piano-Specific) ---
with gr.Accordion("Advanced MIDI Rendering Options", open=False) as advanced_rendering_options:
render_with_sustains = gr.Checkbox(label="Apply sustain pedal effects (if present)", value=True)
render_output_as_solo_piano = gr.Checkbox(label="Convert to Solo Piano (Grand Piano patch)", value=False)
render_remove_drums = gr.Checkbox(label="Remove drum track", value=False)
render_transpose_to_C4 = gr.Checkbox(label="Transpose entire score to center around C4", value=False)
render_transpose_value = gr.Slider(-12, 12, value=0, step=1, label="Transpose (semitones)")
custom_render_patch = gr.Slider(-1, 127, value=-1, step=1, label="Force MIDI Patch (-1 to disable)")
merge_misaligned_notes = gr.Slider(-1, 127, value=-1, label="Time to merge notes in ms (-1 to disable)")
render_align = gr.Radio(
["Do not align", "Start Times", "Start Times and Durations", "Start Times and Split Durations"],
label="Align notes to musical bars",
value="Do not align"
)
submit_btn = gr.Button("Process and Render", variant="primary")
with gr.Column(scale=2):
# --- OUTPUT COLUMN ---
gr.Markdown("## 3. Results")
output_midi_title = gr.Textbox(label="MIDI Title")
output_song_description = gr.Textbox(label="MIDI Description", lines=3)
output_audio = gr.Audio(label="Rendered Audio Output", format="wav", waveform_options=waveform_options)
output_plot = gr.Plot(label="MIDI Score Plot")
with gr.Row():
output_midi = gr.File(label="Download Processed MIDI File", file_types=[".mid"])
output_midi_md5 = gr.Textbox(label="Output MIDI MD5 Hash")
output_midi_summary = gr.Textbox(label="MIDI metadata summary", lines=4)
# --- Define all input components for the click event ---
all_inputs = [
input_file,
enable_stereo_processing,
transcription_method,
onset_threshold, frame_threshold, minimum_note_length, minimum_frequency, maximum_frequency,
infer_onsets, melodia_trick, multiple_pitch_bends,
render_type, soundfont_bank, render_sample_rate,
render_with_sustains, merge_misaligned_notes, custom_render_patch, render_align,
render_transpose_value, render_transpose_to_C4, render_output_as_solo_piano, render_remove_drums,
s8bit_waveform_type, s8bit_envelope_type, s8bit_decay_time_s,
s8bit_pulse_width, s8bit_vibrato_rate, s8bit_vibrato_depth, s8bit_bass_boost_level
]
all_outputs = [
output_midi_md5, output_midi_title, output_midi_summary,
output_midi, output_audio, output_plot, output_song_description
]
# --- Event Handling ---
submit_btn.click(
process_and_render_file,
inputs=all_inputs,
outputs=all_outputs
)
# --- Listeners for dynamic UI updates ---
transcription_method.change(
fn=update_ui_visibility,
inputs=[transcription_method, soundfont_bank],
outputs=[general_transcription_settings, synth_8bit_settings]
)
soundfont_bank.change(
fn=update_ui_visibility,
inputs=[transcription_method, soundfont_bank],
outputs=[general_transcription_settings, synth_8bit_settings]
)
# Launch the Gradio app
app.queue().launch(inbrowser=True, debug=True)
|