refactor: Replace local remove_border with image-panel-border-cleaner package.
Browse files- app.py +2 -1
- image_processing/panel.py +0 -160
- requirements.txt +3 -1
app.py
CHANGED
@@ -14,7 +14,8 @@ import tempfile
|
|
14 |
import shutil
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
-
from image_processing.panel import generate_panel_blocks, generate_panel_blocks_by_ai
|
|
|
18 |
|
19 |
# --- UI Description ---
|
20 |
DESCRIPTION = """
|
|
|
14 |
import shutil
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
+
from image_processing.panel import generate_panel_blocks, generate_panel_blocks_by_ai
|
18 |
+
from image_panel_border_cleaner import remove_border
|
19 |
|
20 |
# --- UI Description ---
|
21 |
DESCRIPTION = """
|
image_processing/panel.py
CHANGED
@@ -547,163 +547,3 @@ def extract_panels_for_images_in_folder_by_ai(
|
|
547 |
cv2.imwrite(out_path, panel)
|
548 |
num_panels += len(panel_blocks)
|
549 |
return (num_files, num_panels)
|
550 |
-
|
551 |
-
|
552 |
-
# Ensure the thinning function is available
|
553 |
-
try:
|
554 |
-
# Attempt to import the thinning function from the contrib module
|
555 |
-
from cv2.ximgproc import thinning
|
556 |
-
except ImportError:
|
557 |
-
# If opencv-contrib-python is not installed, print a warning and provide a dummy function
|
558 |
-
print("Warning: cv2.ximgproc.thinning not found. Border removal might be less effective.")
|
559 |
-
print("Please install 'opencv-contrib-python' via 'pip install opencv-contrib-python'")
|
560 |
-
def thinning(src, thinningType=None): # Dummy function to prevent crashes
|
561 |
-
return src
|
562 |
-
|
563 |
-
|
564 |
-
def _find_best_border_line(roi_mask: np.ndarray, axis: int, scan_range: range) -> int:
|
565 |
-
"""
|
566 |
-
A helper function to find the best border line along a single axis.
|
567 |
-
It scans from the inside-out and returns the index of the line with the highest score.
|
568 |
-
|
569 |
-
Parameters:
|
570 |
-
- roi_mask: The skeletonized mask of the panel's border area.
|
571 |
-
- axis: The axis to scan along (0 for vertical, 1 for horizontal).
|
572 |
-
- scan_range: The range of indices to scan (defines direction and search zone).
|
573 |
-
|
574 |
-
Returns:
|
575 |
-
- The index of the most likely border line.
|
576 |
-
"""
|
577 |
-
best_index, max_score = scan_range.start, -1
|
578 |
-
|
579 |
-
# The total span of the search, used for normalizing the position weight.
|
580 |
-
total_span = abs(scan_range.stop - scan_range.start)
|
581 |
-
if total_span == 0:
|
582 |
-
return best_index
|
583 |
-
|
584 |
-
for i in scan_range:
|
585 |
-
# Calculate continuity score based on the scan axis
|
586 |
-
if axis == 1: # Horizontal scan (for top/bottom borders)
|
587 |
-
continuity_score = np.count_nonzero(roi_mask[i, :])
|
588 |
-
else: # Vertical scan (for left/right borders)
|
589 |
-
continuity_score = np.count_nonzero(roi_mask[:, i])
|
590 |
-
|
591 |
-
# Position weight increases as we move from the start (inner) to the end (outer) of the range.
|
592 |
-
# This prioritizes lines closer to the physical edge of the panel.
|
593 |
-
progress = abs(i - scan_range.start)
|
594 |
-
position_weight = progress / total_span
|
595 |
-
|
596 |
-
# Combine scores
|
597 |
-
score = continuity_score * (1 + position_weight)
|
598 |
-
|
599 |
-
# Update if we found a better candidate
|
600 |
-
if score >= max_score:
|
601 |
-
max_score, best_index = score, i
|
602 |
-
|
603 |
-
return best_index
|
604 |
-
|
605 |
-
|
606 |
-
def remove_border(panel_image: np.ndarray,
|
607 |
-
search_zone_ratio: float = 0.25,
|
608 |
-
padding: int = 5) -> np.ndarray:
|
609 |
-
"""
|
610 |
-
Removes borders using skeletonization and weighted projection analysis.
|
611 |
-
This definitive version accurately finds the innermost border line by reducing
|
612 |
-
all contour lines to a single-pixel width, eliminating thickness bias from
|
613 |
-
speech bubble intersections.
|
614 |
-
|
615 |
-
Parameters:
|
616 |
-
- panel_image: The input panel image.
|
617 |
-
- search_zone_ratio: The percentage of the panel's width/height from the edge
|
618 |
-
to define the search area for a border (e.g., 0.25 = 25%).
|
619 |
-
- padding: Pixels to add inside the final detected border to avoid clipping art.
|
620 |
-
|
621 |
-
Returns:
|
622 |
-
- The cropped panel image, or the original if processing fails.
|
623 |
-
"""
|
624 |
-
# Return original image if it's invalid or too small to process
|
625 |
-
if panel_image is None or panel_image.shape[0] < 30 or panel_image.shape[1] < 30:
|
626 |
-
return panel_image
|
627 |
-
|
628 |
-
# --- 1. Preparation ---
|
629 |
-
# Add a safe, white border to separate the panel's border from the image edge
|
630 |
-
pad_size = 15
|
631 |
-
padded_image = cv2.copyMakeBorder(
|
632 |
-
panel_image, pad_size, pad_size, pad_size, pad_size,
|
633 |
-
cv2.BORDER_CONSTANT, value=[255, 255, 255]
|
634 |
-
)
|
635 |
-
|
636 |
-
# Convert to grayscale and binarize to highlight non-white areas
|
637 |
-
gray = cv2.cvtColor(padded_image, cv2.COLOR_BGR2GRAY)
|
638 |
-
_, thresh = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)
|
639 |
-
|
640 |
-
# Find the outermost contour, which should now be the panel itself
|
641 |
-
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
642 |
-
|
643 |
-
# If no contours are found, there's nothing to process
|
644 |
-
if not contours:
|
645 |
-
return panel_image
|
646 |
-
|
647 |
-
# The largest contour is almost always the panel we want
|
648 |
-
largest_contour = max(contours, key=cv2.contourArea)
|
649 |
-
x, y, w, h = cv2.boundingRect(largest_contour)
|
650 |
-
|
651 |
-
# --- 2. Create Skeletonized Mask ---
|
652 |
-
# Create a mask by filling the largest contour
|
653 |
-
filled_mask = np.zeros_like(gray)
|
654 |
-
cv2.drawContours(filled_mask, [largest_contour], -1, 255, cv2.FILLED)
|
655 |
-
|
656 |
-
# Create a hollow version of the contour to provide a clean input for skeletonization.
|
657 |
-
# Use a fixed number of erosion iterations to define the thickness of the hollow ring.
|
658 |
-
erosion_iterations = 5
|
659 |
-
hollow_contour = cv2.subtract(filled_mask, cv2.erode(filled_mask, np.ones((3,3), np.uint8), iterations=erosion_iterations))
|
660 |
-
|
661 |
-
# Perform skeletonization to reduce varied-thickness lines to a single-pixel-wide skeleton
|
662 |
-
skeleton = thinning(hollow_contour)
|
663 |
-
|
664 |
-
# Crop the skeleton mask to the Region of Interest (ROI) for analysis
|
665 |
-
roi_mask = skeleton[y:y+h, x:x+w]
|
666 |
-
|
667 |
-
# --- 3. Find Borders using the Helper Function ---
|
668 |
-
# Define search zones and scan ranges for each border
|
669 |
-
top_search_end = int(h * search_zone_ratio)
|
670 |
-
bottom_search_start = h - top_search_end
|
671 |
-
left_search_end = int(w * search_zone_ratio)
|
672 |
-
right_search_start = w - left_search_end
|
673 |
-
|
674 |
-
# The scan_range determines the direction (inside-out)
|
675 |
-
top_range = range(top_search_end, -1, -1)
|
676 |
-
bottom_range = range(bottom_search_start, h)
|
677 |
-
left_range = range(left_search_end, -1, -1)
|
678 |
-
right_range = range(right_search_start, w)
|
679 |
-
|
680 |
-
# Call the common function for each border
|
681 |
-
|
682 |
-
# --- Find Top Border ---
|
683 |
-
best_top_y = _find_best_border_line(roi_mask, axis=1, scan_range=top_range)
|
684 |
-
# --- Find Bottom Border ---
|
685 |
-
best_bottom_y = _find_best_border_line(roi_mask, axis=1, scan_range=bottom_range)
|
686 |
-
# --- Find Left Border ---
|
687 |
-
best_left_x = _find_best_border_line(roi_mask, axis=0, scan_range=left_range)
|
688 |
-
# --- Find Right Border ---
|
689 |
-
best_right_x = _find_best_border_line(roi_mask, axis=0, scan_range=right_range)
|
690 |
-
|
691 |
-
# --- 4. Final Cropping ---
|
692 |
-
# Convert relative ROI coordinates back to the global coordinates of the padded image and apply padding
|
693 |
-
final_x1 = x + best_left_x + padding
|
694 |
-
final_y1 = y + best_top_y + padding
|
695 |
-
final_x2 = x + best_right_x - padding
|
696 |
-
final_y2 = y + best_bottom_y - padding
|
697 |
-
|
698 |
-
# If the calculated coordinates are invalid, return the original image
|
699 |
-
if final_x1 >= final_x2 or final_y1 >= final_y2:
|
700 |
-
return panel_image
|
701 |
-
|
702 |
-
# Crop the final result from the padded image
|
703 |
-
cropped = padded_image[final_y1:final_y2, final_x1:final_x2]
|
704 |
-
|
705 |
-
# Perform a final check to ensure the cropped image is not too small
|
706 |
-
if cropped.shape[0] < 10 or cropped.shape[1] < 10:
|
707 |
-
return panel_image
|
708 |
-
|
709 |
-
return cropped
|
|
|
547 |
cv2.imwrite(out_path, panel)
|
548 |
num_panels += len(panel_blocks)
|
549 |
return (num_files, num_panels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -5,4 +5,6 @@ numpy
|
|
5 |
opencv-contrib-python
|
6 |
tqdm
|
7 |
torch
|
8 |
-
yolov5
|
|
|
|
|
|
5 |
opencv-contrib-python
|
6 |
tqdm
|
7 |
torch
|
8 |
+
yolov5
|
9 |
+
|
10 |
+
git+https://github.com/avan06/image-panel-border-cleaner.git
|