Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	Upgrade GPU to L40S
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -282,7 +282,7 @@ def start_training( 
     | 
|
| 282 | 
         
             
                    shutil.copy(script_location + "/requirements.autotrain", dataset_folder + "/requirements.txt")
         
     | 
| 283 | 
         
             
                    # command to run autotrain spacerunner
         
     | 
| 284 | 
         
             
                    cmd = f"autotrain spacerunner --project-name {slugged_lora_name} --script-path {dataset_folder}"
         
     | 
| 285 | 
         
            -
                    cmd += f" --username {profile.username} --token {oauth_token.token} --backend spaces- 
     | 
| 286 | 
         
             
                    outcome = subprocess.run(cmd.split())
         
     | 
| 287 | 
         
             
                    if outcome.returncode == 0:
         
     | 
| 288 | 
         
             
                        return f"""# Your training has started. 
         
     | 
| 
         @@ -311,11 +311,11 @@ def swap_visibilty(profile: Union[gr.OAuthProfile, None]): 
     | 
|
| 311 | 
         
             
            def update_pricing(steps, oauth_token: Union[gr.OAuthToken, None]):
         
     | 
| 312 | 
         
             
                if(oauth_token and is_spaces):
         
     | 
| 313 | 
         
             
                    user = whoami(oauth_token.token)
         
     | 
| 314 | 
         
            -
                    seconds_per_iteration =  
     | 
| 315 | 
         
             
                    total_seconds = (steps * seconds_per_iteration) + 240
         
     | 
| 316 | 
         
            -
                    cost_per_second =  
     | 
| 317 | 
         
             
                    cost = round(cost_per_second * total_seconds, 2)
         
     | 
| 318 | 
         
            -
                    cost_preview = f'''To train this LoRA, a paid  
     | 
| 319 | 
         
             
                    ### Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(steps)} iterations at {seconds_per_iteration}s/it)</small>'''
         
     | 
| 320 | 
         
             
                    if(user["canPay"]):
         
     | 
| 321 | 
         
             
                        return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True)
         
     | 
| 
         | 
|
| 282 | 
         
             
                    shutil.copy(script_location + "/requirements.autotrain", dataset_folder + "/requirements.txt")
         
     | 
| 283 | 
         
             
                    # command to run autotrain spacerunner
         
     | 
| 284 | 
         
             
                    cmd = f"autotrain spacerunner --project-name {slugged_lora_name} --script-path {dataset_folder}"
         
     | 
| 285 | 
         
            +
                    cmd += f" --username {profile.username} --token {oauth_token.token} --backend spaces-l40sx1"
         
     | 
| 286 | 
         
             
                    outcome = subprocess.run(cmd.split())
         
     | 
| 287 | 
         
             
                    if outcome.returncode == 0:
         
     | 
| 288 | 
         
             
                        return f"""# Your training has started. 
         
     | 
| 
         | 
|
| 311 | 
         
             
            def update_pricing(steps, oauth_token: Union[gr.OAuthToken, None]):
         
     | 
| 312 | 
         
             
                if(oauth_token and is_spaces):
         
     | 
| 313 | 
         
             
                    user = whoami(oauth_token.token)
         
     | 
| 314 | 
         
            +
                    seconds_per_iteration = 2.00
         
     | 
| 315 | 
         
             
                    total_seconds = (steps * seconds_per_iteration) + 240
         
     | 
| 316 | 
         
            +
                    cost_per_second = 1.80/60/60
         
     | 
| 317 | 
         
             
                    cost = round(cost_per_second * total_seconds, 2)
         
     | 
| 318 | 
         
            +
                    cost_preview = f'''To train this LoRA, a paid L40S GPU will be hooked under the hood during training and then removed once finished.
         
     | 
| 319 | 
         
             
                    ### Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(steps)} iterations at {seconds_per_iteration}s/it)</small>'''
         
     | 
| 320 | 
         
             
                    if(user["canPay"]):
         
     | 
| 321 | 
         
             
                        return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True)
         
     |