Spaces:
Runtime error
Runtime error
File size: 8,225 Bytes
2d4b120 c84ed95 80f2297 09881d4 556b288 2d4b120 f0d92dc 2d4b120 f0d92dc 2d4b120 679fbc2 2d4b120 23ca923 341b6a4 2d4b120 fe77dfe 2d4b120 23ca923 bb28608 aa1e2a0 2d4b120 23ca923 bceb306 23ca923 bb28608 341b6a4 2d4b120 75fe862 bb28608 23ca923 bb28608 aa1e2a0 75fe862 bb28608 aa1e2a0 75fe862 aa1e2a0 2d4b120 fb1fa43 80f2297 2d4b120 f0d92dc 80f2297 23ca923 f0d92dc 80f2297 2d4b120 23ca923 80f2297 f0d92dc 80f2297 23ca923 f0d92dc 23ca923 80f2297 23ca923 80f2297 23ca923 80f2297 23ca923 80f2297 23ca923 80f2297 23ca923 2d4b120 23ca923 2d4b120 23ca923 f0d92dc dc9afe5 23ca923 341b6a4 5e1a60b 341b6a4 5e1a60b 341b6a4 2d4b120 341b6a4 2d4b120 04ce154 80f2297 2d4b120 82c959c 5fce9cb 04ce154 a7f2116 82c959c bb28608 82c959c 2d4b120 82c959c 09881d4 82c959c 8703a23 82c959c 2d4b120 82c959c c84ed95 82c959c 3bebb47 a7f2116 679fbc2 c84ed95 a7f2116 556b288 2d4b120 a7f2116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from ascending_metrics import ascending_metrics
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading
st.set_page_config(layout="wide")
def get_model_infos():
api = HfApi()
model_infos = api.list_models(filter="model-index", cardData=True)
return model_infos
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 4) if isinstance(value, float) else None
return value
def parse_metrics_rows(meta, only_verified=False):
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
return None
for result in meta["model-index"][0]["results"]:
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
continue
dataset = result["dataset"]["type"]
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
if "split" in result["dataset"]:
row["split"] = result["dataset"]["split"]
if "config" in result["dataset"]:
row["config"] = result["dataset"]["config"]
no_results = True
for metric in result["metrics"]:
name = metric["type"].lower().strip()
if name in ("model_id", "dataset", "split", "config"):
# Metrics are not allowed to be named "dataset", "split", "config".
continue
value = parse_metric_value(metric.get("value", None))
if value is None:
continue
if name in row:
new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
if name not in row or new_metric_better:
# overwrite the metric if the new value is better.
if only_verified:
if "verified" in metric and metric["verified"]:
no_results = False
row[name] = value
else:
no_results = False
row[name] = value
if no_results:
continue
yield row
@st.cache(ttl=0)
def get_data_wrapper():
def get_data(dataframe=None, verified_dataframe=None):
data = []
verified_data = []
print("getting model infos")
model_infos = get_model_infos()
print("got model infos")
for model_info in model_infos:
meta = model_info.cardData
if meta is None:
continue
for row in parse_metrics_rows(meta):
if row is None:
continue
row["model_id"] = model_info.id
data.append(row)
for row in parse_metrics_rows(meta, only_verified=True):
if row is None:
continue
row["model_id"] = model_info.id
verified_data.append(row)
dataframe = pd.DataFrame.from_records(data)
dataframe.to_pickle("cache.pkl")
verified_dataframe = pd.DataFrame.from_records(verified_data)
verified_dataframe.to_pickle("verified_cache.pkl")
if exists("cache.pkl") and exists("verified_cache.pkl"):
# If we have saved the results previously, call an asynchronous process
# to fetch the results and update the saved file. Don't make users wait
# while we fetch the new results. Instead, display the old results for
# now. The new results should be loaded when this method
# is called again.
dataframe = pd.read_pickle("cache.pkl")
verified_dataframe = pd.read_pickle("verified_cache.pkl")
t = threading.Thread(name='get_data procs', target=get_data)
t.start()
else:
# We have to make the users wait during the first startup of this app.
get_data()
dataframe = pd.read_pickle("cache.pkl")
verified_dataframe = pd.read_pickle("verified_cache.pkl")
return dataframe, verified_dataframe
dataframe, verified_dataframe = get_data_wrapper()
st.markdown("# 🤗 Leaderboards")
only_verified_results = st.sidebar.checkbox(
"Filter for Verified Results",
)
selectable_datasets = sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
if only_verified_results:
dataframe = verified_dataframe
query_params = st.experimental_get_query_params()
if "first_query_params" not in st.session_state:
st.session_state.first_query_params = query_params
first_query_params = st.session_state.first_query_params
default_dataset = "common_voice"
if "dataset" in first_query_params:
if len(first_query_params["dataset"]) > 0 and first_query_params["dataset"][0] in selectable_datasets:
default_dataset = first_query_params["dataset"][0]
dataset = st.sidebar.selectbox(
"Dataset",
selectable_datasets,
index=selectable_datasets.index(default_dataset),
)
st.experimental_set_query_params(**{"dataset": [dataset]})
dataset_df = dataframe[dataframe.dataset == dataset]
dataset_df = dataset_df.dropna(axis="columns", how="all")
if len(dataset_df) > 0:
selectable_configs = list(set(dataset_df["config"]))
config = st.sidebar.selectbox(
"Config",
selectable_configs,
)
dataset_df = dataset_df[dataset_df.config == config]
selectable_splits = list(set(dataset_df["split"]))
split = st.sidebar.selectbox(
"Split",
selectable_splits,
)
dataset_df = dataset_df[dataset_df.split == split]
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset", "split", "config"), dataset_df.columns))
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
sorting_metric = st.sidebar.radio(
"Sorting Metric",
selectable_metrics,
)
st.markdown(
"Please click on the model's name to be redirected to its model card."
)
st.markdown(
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/model-evaluator)."
)
# Make the default metric appear right after model names
cols = dataset_df.columns.tolist()
cols.remove(sorting_metric)
cols = cols[:1] + [sorting_metric] + cols[1:]
dataset_df = dataset_df[cols]
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
dataset_df = dataset_df.sort_values(by=cols[1:], ascending=[metric in ascending_metrics for metric in cols[1:]])
dataset_df = dataset_df.replace(np.nan, '-')
# Make the leaderboard
gb = GridOptionsBuilder.from_dataframe(dataset_df)
gb.configure_default_column(sortable=False)
gb.configure_column(
"model_id",
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
)
for name in selectable_metrics:
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
gb.configure_column(
sorting_metric,
sortable=True,
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
)
go = gb.build()
fit_columns = len(dataset_df.columns) < 10
AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns)
else:
st.markdown(
"No data to display."
)
|