File size: 3,872 Bytes
2d4b120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import requests
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load


def make_clickable(model_name):
    link = "https://huggingface.co/" + model_name
    return f'<a target="_blank" href="{link}">{model_name}</a>'


def get_model_ids():
    api = HfApi()
    # TODO: switch to hf-leaderboards for the final version.
    models = api.list_models(filter="hf-asr-leaderboard")
    model_ids = [x.modelId for x in models]
    return model_ids


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md")
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


def parse_metric_value(value):
    if isinstance(value, str):
        "".join(value.split("%"))
        try:
            value = float(value)
        except:  # noqa: E722
            value = None
    elif isinstance(value, list):
        if len(value) > 0:
            value = value[0]
        else:
            value = None
    value = round(value, 2) if value is not None else None
    return value


def parse_metrics_rows(meta):
    if "model-index" not in meta:
        return None
    for result in meta["model-index"][0]["results"]:
        if "dataset" not in result or "metrics" not in result:
            continue
        dataset = result["dataset"]["type"]
        if "args" not in result["dataset"]:
            continue
        row = {"dataset": dataset}
        for metric in result["metrics"]:
            type = metric["type"].lower().strip()
            value = parse_metric_value(metric["value"])
            if value is None:
                continue
            if type not in row or value < row[type]:
                # overwrite the metric if the new value is lower (e.g. with LM)
                row[type] = value
        yield row


@st.cache(ttl=600)
def get_data():
    data = []
    model_ids = get_model_ids()
    for model_id in tqdm(model_ids):
        meta = get_metadata(model_id)
        if meta is None:
            continue
        for row in parse_metrics_rows(meta):
            if row is None:
                continue
            row["model_id"] = model_id
            data.append(row)
    return pd.DataFrame.from_records(data)


dataframe = get_data()
selectable_datasets = list(set(dataframe.dataset.tolist()))

st.markdown("# 🤗 Leaderboards")

dataset = st.sidebar.selectbox(
    "Dataset",
    selectable_datasets,
    index=selectable_datasets.index("common_voice"),
)

dataset_df = dataframe[dataframe.dataset == dataset]
dataset_df = dataset_df.dropna(axis="columns", how="all")

metric = st.sidebar.selectbox(
    "Metric",
    list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns)),
)

dataset_df = dataset_df.filter(["model_id", metric])
dataset_df = dataset_df.dropna()
dataset_df = dataset_df.sort_values(by=metric, ascending=False)

st.markdown(
    "Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it."
)

# display the model ranks
dataset_df = dataset_df.reset_index(drop=True)
dataset_df.index += 1

# turn the model ids into clickable links
dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable)

table_html = dataset_df.to_html(escape=False)
table_html = table_html.replace("<th>", '<th align="left">')  # left-align the headers
st.write(table_html, unsafe_allow_html=True)

st.markdown(
    "Want to beat the Leaderboard? Don't see your model here? Simply add the `hf-leaderboards` tag to your model card alongside your evaluation metrics. See [this commit](https://huggingface.co/facebook/wav2vec2-base-960h/commit/88338305603a4d8db25aca96e669beb5f7dc65cb) as an example."
)