Spaces:
Runtime error
Runtime error
File size: 8,092 Bytes
2d4b120 c84ed95 80f2297 09881d4 2d4b120 bb28608 2d4b120 bb28608 2d4b120 341b6a4 2d4b120 341b6a4 2d4b120 bb28608 341b6a4 2d4b120 fe77dfe 2d4b120 bb28608 aa1e2a0 2d4b120 bceb306 75fe862 bb28608 341b6a4 2d4b120 75fe862 bb28608 aa1e2a0 75fe862 bb28608 aa1e2a0 75fe862 aa1e2a0 2d4b120 80f2297 2d4b120 80f2297 bb28608 80f2297 2d4b120 bb28608 80f2297 2d4b120 341b6a4 bb28608 2d4b120 341b6a4 2d4b120 04ce154 80f2297 2d4b120 bb28608 04ce154 aa1e2a0 bb28608 3bebb47 c84ed95 2d4b120 09881d4 2d4b120 80f2297 c84ed95 3bebb47 c84ed95 3bebb47 80f2297 3bebb47 80f2297 c84ed95 80f2297 3bebb47 80f2297 2d4b120 80f2297 a288d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from ascending_metrics import ascending_metrics
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading
def get_model_ids(author=None):
api = HfApi()
if author is None:
models = api.list_models(filter="model-index")
else:
models = api.list_models(filter="model-index", author="autoevaluate")
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except Exception:
# 404 README.md not found or problem loading it
return None
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 2) if isinstance(value, float) else None
return value
def parse_metrics_rows(meta, from_autoeval=False):
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
return None
for result in meta["model-index"][0]["results"]:
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
continue
dataset = result["dataset"]["type"]
row = {"dataset": dataset, "split": None, "config": None, "verified": from_autoeval}
if "split" in result["dataset"]:
row["split"] = result["dataset"]["split"]
if "config" in result["dataset"]:
row["config"] = result["dataset"]["config"]
no_results = True
for metric in result["metrics"]:
# On autoeval cards, name is consistent. name seems less consistent than
# type for self-reported results on user model cards though.
if from_autoeval:
name = metric["name"].lower().strip()
else:
name = metric["type"].lower().strip()
if name in ("model_id", "dataset", "split", "config", "verified"):
# Metrics are not allowed to be named "dataset", "split", "config", or "verified".
continue
value = parse_metric_value(metric.get("value", None))
if value is None:
continue
if name in row:
new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
if name not in row or new_metric_better:
# overwrite the metric if the new value is better.
if from_autoeval:
# if the metric is from autoeval, only include it in the leaderboard if
# it is a verified metric. Unverified metrics are already included
# in the leaderboard from the unverified model card.
if "verified" in metric and metric["verified"]:
no_results = False
row[name] = value
else:
no_results = False
row[name] = value
if no_results:
continue
yield row
@st.cache(ttl=3600)
def get_data_wrapper():
def get_data():
data = []
model_ids = get_model_ids()
model_ids_from_autoeval = set(get_model_ids(author="autoevaluate"))
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
for row in parse_metrics_rows(meta, from_autoeval=model_id in model_ids_from_autoeval):
if row is None:
continue
row["model_id"] = model_id
data.append(row)
dataframe = pd.DataFrame.from_records(data)
dataframe.to_pickle("cache.pkl")
if exists("cache.pkl"):
# If we have saved the results previously, call an asynchronous process
# to fetch the results and update the saved file. Don't make users wait
# while we fetch the new results. Instead, display the old results for
# now. The new results should be loaded when this method
# is called again.
dataframe = pd.read_pickle("cache.pkl")
t = threading.Thread(name='get_data procs', target=get_data)
t.start()
else:
# We have to make the users wait during the first startup of this app.
get_data()
dataframe = pd.read_pickle("cache.pkl")
return dataframe
dataframe = get_data_wrapper()
selectable_datasets = list(set(dataframe.dataset.tolist()))
st.markdown("# 🤗 Leaderboards")
query_params = st.experimental_get_query_params()
default_dataset = "common_voice"
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in selectable_datasets:
default_dataset = query_params["dataset"][0]
only_verified_results = st.sidebar.checkbox(
"Filter for Verified Results",
)
dataset = st.sidebar.selectbox(
"Dataset",
selectable_datasets,
index=selectable_datasets.index(default_dataset),
)
st.experimental_set_query_params(**{"dataset": [dataset]})
dataset_df = dataframe[dataframe.dataset == dataset]
dataset_df = dataset_df.dropna(axis="columns", how="all")
if only_verified_results:
dataset_df = dataset_df[dataset_df["verified"]]
if "config" in dataset_df.columns:
selectable_configs = list(set(dataset_df["config"]))
config = st.sidebar.selectbox(
"Config",
selectable_configs,
)
dataset_df = dataset_df[dataset_df.config == config]
if "split" in dataset_df.columns:
selectable_splits = list(set(dataset_df["split"]))
split = st.sidebar.selectbox(
"Split",
selectable_splits,
)
dataset_df = dataset_df[dataset_df.split == split]
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset", "split", "config", "verified"), dataset_df.columns))
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
sorting_metric = st.sidebar.radio(
"Sorting Metric",
selectable_metrics,
)
st.markdown(
"Please click on the model's name to be redirected to its model card."
)
st.markdown(
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
)
# Make the default metric appear right after model names
cols = dataset_df.columns.tolist()
cols.remove(sorting_metric)
cols = cols[:1] + [sorting_metric] + cols[1:]
dataset_df = dataset_df[cols]
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
dataset_df = dataset_df.sort_values(by=cols[1:], ascending=[metric in ascending_metrics for metric in cols[1:]])
dataset_df = dataset_df.replace(np.nan, '-')
# Make the leaderboard
gb = GridOptionsBuilder.from_dataframe(dataset_df)
gb.configure_default_column(sortable=False)
gb.configure_column(
"model_id",
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
)
for name in selectable_metrics:
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2, aggFunc='sum')
gb.configure_column(
sorting_metric,
sortable=True,
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
)
go = gb.build()
AgGrid(dataset_df, gridOptions=go, allow_unsafe_jscode=True)
|