Spaces:
Running
Running
Commit
·
4baba46
1
Parent(s):
3bf2cc9
fixed sarcasm
Browse files- backend/services.py +2 -2
backend/services.py
CHANGED
@@ -216,7 +216,7 @@ class SentimentAnalyzer:
|
|
216 |
# "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
217 |
# "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
218 |
# "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
219 |
-
|
220 |
# "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
221 |
}
|
222 |
|
@@ -224,7 +224,7 @@ class SentimentAnalyzer:
|
|
224 |
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")],
|
225 |
# "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")],
|
226 |
# "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")],
|
227 |
-
|
228 |
# "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")],
|
229 |
# "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")],
|
230 |
}
|
|
|
216 |
# "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
217 |
# "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
218 |
# "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
219 |
+
"sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
220 |
# "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
221 |
}
|
222 |
|
|
|
224 |
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")],
|
225 |
# "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")],
|
226 |
# "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")],
|
227 |
+
"sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")],
|
228 |
# "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")],
|
229 |
# "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")],
|
230 |
}
|