Arabic-NLP / backend /aragpt.py
wissamantoun's picture
removed aragpt2 medium and large for ram reduction
f61b4e0
raw
history blame
5.9 kB
import streamlit as st
from .services import TextGeneration
from tokenizers import Tokenizer
from functools import lru_cache
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
@lru_cache(maxsize=1)
def load_text_generator():
generator = TextGeneration()
generator.load()
return generator
generator = load_text_generator()
qa_prompt = """
أجب عن السؤال التالي:
"""
qa_prompt_post = """ الجواب هو """
qa_prompt_post_year = """ في سنة: """
def write():
st.markdown(
"""
<h1 style="text-align:left;">Arabic Language Generation</h1>
""",
unsafe_allow_html=True,
)
# Sidebar
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
st.sidebar.subheader("Configurable parameters")
model_name = st.sidebar.selectbox(
"Model Selector",
options=[
"AraGPT2-Base",
# "AraGPT2-Medium",
# "Aragpt2-Large",
"AraGPT2-Mega",
],
index=0,
)
max_new_tokens = st.sidebar.number_input(
"Maximum length",
min_value=0,
max_value=1024,
value=100,
help="The maximum length of the sequence to be generated.",
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities.",
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
)
do_sample = st.sidebar.selectbox(
"Sampling?",
(True, False),
help="Whether or not to use sampling; use greedy decoding otherwise.",
)
num_beams = st.sidebar.number_input(
"Number of beams",
min_value=1,
max_value=10,
value=3,
help="The number of beams to use for beam search.",
)
repetition_penalty = st.sidebar.number_input(
"Repetition Penalty",
min_value=0.0,
value=3.0,
step=0.1,
help="The parameter for repetition penalty. 1.0 means no penalty",
)
no_repeat_ngram_size = st.sidebar.number_input(
"No Repeat N-Gram Size",
min_value=0,
value=3,
help="If set to int > 0, all ngrams of that size can only occur once.",
)
st.write("#")
col = st.columns(2)
col[0].image("images/AraGPT2.png", width=200)
st.markdown(
"""
<h3 style="text-align:left;">AraGPT2 is GPT2 model trained from scratch on 77GB of Arabic text.</h3>
<h4 style="text-align:left;"> More details in our <a href="https://github.com/aub-mind/arabert/tree/master/aragpt2">repo</a>.</h4>
<p style="text-align:left;"><p>
<p style="text-align:left;">Use the generation paramters on the sidebar to adjust generation quality.</p>
<p style="text-align:right;"><p>
""",
unsafe_allow_html=True,
)
# col[0].write(
# "AraGPT2 is trained from screatch on 77GB of Arabic text. More details in our [repo](https://github.com/aub-mind/arabert/tree/master/aragpt2)."
# )
# st.write("## Generate Arabic Text")
st.markdown(
"""
<style>
p, div, input, label, textarea{
text-align: right;
}
</style>
""",
unsafe_allow_html=True,
)
prompt = st.text_area(
"Prompt",
"يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال",
)
if st.button("Generate"):
with st.spinner("Generating..."):
generated_text = generator.generate(
prompt=prompt,
model_name=model_name,
max_new_tokens=max_new_tokens,
temperature=temp,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_beams=num_beams,
no_repeat_ngram_size=no_repeat_ngram_size,
)
st.write(generated_text)
st.markdown("---")
st.subheader("")
st.markdown(
"""
<p style="text-align:left;"><p>
<h2 style="text-align:left;">Zero-Shot Question Answering</h2>
<p style="text-align:left;">Adjust the maximum length to closely match the expected output length. Setting the Sampling paramter to False is recommended</p>
<p style="text-align:left;"><p>
""",
unsafe_allow_html=True,
)
question = st.text_input(
"Question", "من كان رئيس ألمانيا النازية في الحرب العالمية الثانية ؟"
)
is_date = st.checkbox("Help the model: Is the answer a date?")
if st.button("Answer"):
prompt2 = qa_prompt + question + qa_prompt_post
if is_date:
prompt2 += qa_prompt_post_year
else:
prompt2 += " : "
with st.spinner("Thinking..."):
answer = generator.generate(
prompt=prompt2,
model_name=model_name,
max_new_tokens=max_new_tokens,
temperature=temp,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_beams=num_beams,
no_repeat_ngram_size=no_repeat_ngram_size,
)
st.write(answer)