Spaces:
Running
Running
File size: 13,554 Bytes
c59ebda 0558cbb c59ebda 0558cbb c59ebda 0558cbb c59ebda 0558cbb c59ebda 134aae6 c59ebda 0558cbb 5ede0fb 0558cbb 5ede0fb 0558cbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import json
import os
from typing import List
import more_itertools
import pandas as pd
import requests
from tqdm.auto import tqdm
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
from .preprocess import ArabertPreprocessor
from .sa_utils import *
from .utils import download_models
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
class TextGeneration:
def __init__(self):
self.debug = False
self.generation_pipline = {}
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega")
self.tokenizer = GPT2Tokenizer.from_pretrained(
"aubmindlab/aragpt2-mega", use_fast=False
)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.API_KEY = os.getenv("API_KEY")
self.headers = {"Authorization": f"Bearer {self.API_KEY}"}
# self.model_names_or_paths = {
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium",
# "aragpt2-base": "D:/ML/Models/aragpt2-base",
# }
self.model_names_or_paths = {
"aragpt2-medium": "aubmindlab/aragpt2-medium",
"aragpt2-base": "aubmindlab/aragpt2-base",
"aragpt2-large": "aubmindlab/aragpt2-large",
"aragpt2-mega": "aubmindlab/aragpt2-mega",
}
set_seed(42)
def load_pipeline(self):
for model_name, model_path in self.model_names_or_paths.items():
if "base" in model_name or "medium" in model_name:
self.generation_pipline[model_name] = pipeline(
"text-generation",
model=GPT2LMHeadModel.from_pretrained(model_path),
tokenizer=self.tokenizer,
device=-1,
)
else:
self.generation_pipline[model_name] = pipeline(
"text-generation",
model=GROVERLMHeadModel.from_pretrained(model_path),
tokenizer=self.tokenizer,
device=-1,
)
def load(self):
if not self.debug:
self.load_pipeline()
def generate(
self,
model_name,
prompt,
max_new_tokens: int,
temperature: float,
top_k: int,
top_p: float,
repetition_penalty: float,
no_repeat_ngram_size: int,
do_sample: bool,
num_beams: int,
):
prompt = self.preprocessor.preprocess(prompt)
return_full_text = False
return_text = True
num_return_sequences = 1
pad_token_id = 0
eos_token_id = 0
input_tok = self.tokenizer.tokenize(prompt)
max_length = len(input_tok) + max_new_tokens
if max_length > 1024:
max_length = 1024
if not self.debug:
generated_text = self.generation_pipline[model_name.lower()](
prompt,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
return_full_text=return_full_text,
return_text=return_text,
do_sample=do_sample,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
)[0]["generated_text"]
else:
generated_text = self.generate_by_query(
prompt,
model_name,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
return_full_text=return_full_text,
return_text=return_text,
do_sample=do_sample,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
)
# print(generated_text)
if isinstance(generated_text, dict):
if "error" in generated_text:
if "is currently loading" in generated_text["error"]:
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}"
return generated_text["error"]
else:
return "Something happened 🤷♂️!!"
else:
generated_text = generated_text[0]["generated_text"]
return self.preprocessor.unpreprocess(generated_text)
def query(self, payload, model_name):
data = json.dumps(payload)
url = (
"https://api-inference.huggingface.co/models/aubmindlab/"
+ model_name.lower()
)
response = requests.request("POST", url, headers=self.headers, data=data)
return json.loads(response.content.decode("utf-8"))
def generate_by_query(
self,
prompt: str,
model_name: str,
max_length: int,
temperature: float,
top_k: int,
top_p: float,
repetition_penalty: float,
no_repeat_ngram_size: int,
pad_token_id: int,
eos_token_id: int,
return_full_text: int,
return_text: int,
do_sample: bool,
num_beams: int,
num_return_sequences: int,
):
payload = {
"inputs": prompt,
"parameters": {
"max_length ": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"pad_token_id": pad_token_id,
"eos_token_id": eos_token_id,
"return_full_text": return_full_text,
"return_text": return_text,
"pad_token_id": pad_token_id,
"do_sample": do_sample,
"num_beams": num_beams,
"num_return_sequences": num_return_sequences,
},
"options": {
"use_cache": True,
},
}
return self.query(payload, model_name)
class SentimentAnalyzer:
def __init__(self):
self.sa_models = [
"sa_trial5_1",
"sa_no_aoa_in_neutral",
"sa_cnnbert",
"sa_sarcasm",
"sar_trial10",
"sa_no_AOA",
]
download_models(self.sa_models)
# fmt: off
self.processors = {
"sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
"sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
"sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
"sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
"sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
"sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
}
self.pipelines = {
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in range(0,5)],
"sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in range(0,5)],
"sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in range(0,5)],
"sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in range(0,5)],
"sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in range(0,5)],
"sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in range(0,5)],
}
# fmt: on
def get_sarcasm_label(self, texts):
prep = self.processors["sar_trial10"]
prep_texts = [prep.preprocess(x) for x in texts]
preds_df = pd.DataFrame([])
for i in range(0, 5):
preds = []
for s in tqdm(more_itertools.chunked(list(prep_texts), 128)):
preds.extend(self.pipelines["sar_trial10"][i](s))
preds_df[f"model_{i}"] = preds
final_labels = []
final_scores = []
for id, row in preds_df.iterrows():
pos_total = 0
neu_total = 0
for pred in row[:]:
pos_total += pred[0]["score"]
neu_total += pred[1]["score"]
pos_avg = pos_total / len(row[:])
neu_avg = neu_total / len(row[:])
final_labels.append(
self.pipelines["sar_trial10"][0].model.config.id2label[
np.argmax([pos_avg, neu_avg])
]
)
final_scores.append(np.max([pos_avg, neu_avg]))
return final_labels, final_scores
def get_preds_from_a_model(self, texts: List[str], model_name):
prep = self.processors[model_name]
prep_texts = [prep.preprocess(x) for x in texts]
if model_name == "sa_sarcasm":
sarcasm_label, _ = self.get_preds_from_sarcasm(texts, "sar_trial10")
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"}
labeled_prep_texts = []
for t, l in zip(prep_texts, sarcasm_label):
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
preds_df = pd.DataFrame([])
for i in range(0, 5):
preds = []
for s in tqdm(more_itertools.chunked(list(prep_texts), 128)):
preds.extend(self.pipelines[model_name][i](s))
preds_df[f"model_{i}"] = preds
final_labels = []
final_scores = []
final_scores_list = []
for id, row in preds_df.iterrows():
pos_total = 0
neg_total = 0
neu_total = 0
for pred in row[2:]:
pos_total += pred[0]["score"]
neu_total += pred[1]["score"]
neg_total += pred[2]["score"]
pos_avg = pos_total / 5
neu_avg = neu_total / 5
neg_avg = neg_total / 5
if model_name == "sa_no_aoa_in_neutral":
final_labels.append(
self.pipelines[model_name][0].model.config.id2label[
np.argmax([neu_avg, neg_avg, pos_avg])
]
)
else:
final_labels.append(
self.pipelines[model_name][0].model.config.id2label[
np.argmax([pos_avg, neu_avg, neg_avg])
]
)
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
final_scores_list.append((pos_avg, neu_avg, neg_avg))
return final_labels, final_scores, final_scores_list
def predict(self, texts: List[str]):
(
new_balanced_label,
new_balanced_score,
new_balanced_score_list,
) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
(
cnn_marbert_label,
cnn_marbert_score,
cnn_marbert_score_list,
) = self.get_preds_from_a_model(texts, "sa_cnnbert")
trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
texts, "sa_trial5_1"
)
no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
texts, "sa_no_AOA"
)
sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
texts, "sa_sarcasm"
)
id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
final_ensemble_prediction = []
final_ensemble_score = []
final_ensemble_all_score = []
for entry in zip(
new_balanced_score_list,
cnn_marbert_score_list,
trial5_score_list,
no_aoa_score_list,
sarcasm_score_list,
):
pos_score = 0
neu_score = 0
neg_score = 0
for s in entry:
pos_score += s[0] * 1.57
neu_score += s[1] * 0.98
neg_score += s[2] * 0.93
# weighted 2
# pos_score += s[0]*1.67
# neu_score += s[1]
# neg_score += s[2]*0.95
final_ensemble_prediction.append(
id_label_map[np.argmax([pos_score, neu_score, neg_score])]
)
final_ensemble_score.append(np.max([pos_score, neu_score, neg_score]))
final_ensemble_all_score.append((pos_score, neu_score, neg_score))
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
|