Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
processor = DonutProcessor.from_pretrained("nielsr/donut-demo") | |
model = VisionEncoderDecoderModel.from_pretrained("nielsr/donut-demo") | |
def donut(input_img): | |
# prepare encoder inputs | |
pixel_values = processor(sample["image"].convert("RGB"), return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
# prepare decoder inputs | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
decoder_input_ids = decoder_input_ids.to(device) | |
# autoregressively generate sequence | |
model = model.to(device) | |
return model.generate( | |
pixel_values, | |
decoder_input_ids=decoder_input_ids, | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
def parse_json(outputs): | |
seq = processor.batch_decode(outputs.sequences)[0] | |
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token | |
return processor.token2json(seq) | |
def predict(input_img): | |
outputs = donut(input_img) | |
result = parse_json(outputs) | |
return result | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Upload gambar dokumen", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.JSON(label="Hasil")], | |
title="OCR Dokumen Identitas Indonesia", | |
description="Ekstraksi gambar KTP, SIM, Paspor, KK, dan NPWP menjadi data teks tersturktur", | |
) | |
if __name__ == "__main__": | |
gradio_app.launch(share=True) | |