import gradio as gr from ultralytics import YOLO import spaces # Import the `spaces` library # Load pre-trained YOLOv8 model model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt") # Decorate the `process_image` function with `@spaces.GPU` @spaces.GPU(duration=60) # Optional: Set the duration if needed def process_image(image): try: # Process the image results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True) result = results[0] # Extract the annotated image and the labels/confidence scores annotated_image = result.plot() detected_areas_labels = "\n".join( [f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes] ) return annotated_image, detected_areas_labels except Exception as e: return None, f"Error processing image: {e}" # Create the Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Document Segmentation Demo (ZeroGPU)") # Input Components input_image = gr.Image(type="pil", label="Upload Image") # Output Components output_image = gr.Image(type="pil", label="Annotated Image") output_text = gr.Textbox(label="Detected Areas and Labels") # Button to trigger inference btn = gr.Button("Run Document Segmentation") btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text]) # Launch the demo demo.queue(max_size=1).launch() # Queue to handle concurrent requests