import gradio as gr from ultralytics import YOLO import cv2 import numpy as np import os import requests import torch # Load the model file model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" if not os.path.exists(model_path): # Download the model file if it doesn't exist model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" response = requests.get(model_url) with open(model_path, "wb") as f: f.write(response.content) # Load the document segmentation model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') docseg_model = YOLO(model_path) # Remove .to(device) to let ultralytics auto-detect def process_image(image): try: # Convert image to the format YOLO model expects image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) results = docseg_model.predict(image) # Use predict for inference result = results[0] # Get the first (and usually only) result # Extract annotated image from results annotated_img = result.plot() # Simplified plotting annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) # Prepare detected areas and labels as text output detected_areas_labels = "\n".join( [f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes] # Uppercase labels ) except Exception as e: return None, f"Error during processing: {e}" # Error handling return annotated_img, detected_areas_labels # Define the Gradio interface with gr.Blocks() as interface: gr.Markdown("### Document Segmentation using YOLOv8") input_image = gr.Image(type="pil", label="Input Image") output_image = gr.Image(type="pil", label="Annotated Image") output_text = gr.Textbox(label="Detected Areas and Labels") gr.Button("Run").click( fn=process_image, inputs=input_image, outputs=[output_image, output_text] ) # Launch the interface (remove the conditional launch) interface.launch(share=True) # Allow sharing for easier debugging