Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6 |
import requests
|
7 |
import torch
|
8 |
|
9 |
-
#
|
10 |
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
11 |
if not os.path.exists(model_path):
|
12 |
# Download the model file if it doesn't exist
|
@@ -17,21 +17,25 @@ if not os.path.exists(model_path):
|
|
17 |
|
18 |
# Load the document segmentation model
|
19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
-
docseg_model = YOLO(model_path).to(device)
|
21 |
|
22 |
def process_image(image):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
return annotated_img, detected_areas_labels
|
37 |
|
@@ -48,7 +52,5 @@ with gr.Blocks() as interface:
|
|
48 |
outputs=[output_image, output_text]
|
49 |
)
|
50 |
|
51 |
-
interface
|
52 |
-
|
53 |
-
if __name__ == "__main__":
|
54 |
-
interface.launch()
|
|
|
6 |
import requests
|
7 |
import torch
|
8 |
|
9 |
+
# Load the model file
|
10 |
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
11 |
if not os.path.exists(model_path):
|
12 |
# Download the model file if it doesn't exist
|
|
|
17 |
|
18 |
# Load the document segmentation model
|
19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
+
docseg_model = YOLO(model_path) # Remove .to(device) to let ultralytics auto-detect
|
21 |
|
22 |
def process_image(image):
|
23 |
+
try:
|
24 |
+
# Convert image to the format YOLO model expects
|
25 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
26 |
+
results = docseg_model.predict(image) # Use predict for inference
|
27 |
+
result = results[0] # Get the first (and usually only) result
|
28 |
+
|
29 |
+
# Extract annotated image from results
|
30 |
+
annotated_img = result.plot() # Simplified plotting
|
31 |
+
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
32 |
+
|
33 |
+
# Prepare detected areas and labels as text output
|
34 |
+
detected_areas_labels = "\n".join(
|
35 |
+
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes] # Uppercase labels
|
36 |
+
)
|
37 |
+
except Exception as e:
|
38 |
+
return None, f"Error during processing: {e}" # Error handling
|
39 |
|
40 |
return annotated_img, detected_areas_labels
|
41 |
|
|
|
52 |
outputs=[output_image, output_text]
|
53 |
)
|
54 |
|
55 |
+
# Launch the interface (remove the conditional launch)
|
56 |
+
interface.launch(share=True) # Allow sharing for easier debugging
|
|
|
|