Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
-
import
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
import requests
|
7 |
import torch
|
8 |
-
import spaces # Import spaces to use ZeroGPU functionality
|
9 |
-
|
10 |
-
# Ensure the model file is in the correct location
|
11 |
-
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
12 |
-
if not os.path.exists(model_path):
|
13 |
-
# Download the model file if it doesn't exist
|
14 |
-
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
15 |
-
response = requests.get(model_url)
|
16 |
-
with open(model_path, "wb") as f:
|
17 |
-
f.write(response.content)
|
18 |
-
|
19 |
-
# Load the document segmentation model
|
20 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
-
docseg_model = YOLO(model_path).to(device)
|
22 |
-
|
23 |
-
@spaces.GPU
|
24 |
-
def process_image(image):
|
25 |
-
# Convert image to the format YOLO model expects
|
26 |
-
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
27 |
-
results = docseg_model(image)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
[f"{box.label}: {box.conf:.2f}" for box in results[0].boxes]
|
36 |
-
)
|
37 |
|
38 |
-
return annotated_img, detected_areas_labels
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
45 |
output_text = gr.Textbox(label="Detected Areas and Labels")
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
outputs=[output_image, output_text]
|
51 |
-
)
|
52 |
-
|
53 |
-
interface.launch()
|
54 |
|
55 |
-
|
56 |
-
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
+
import spaces
|
|
|
|
|
|
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load pre-trained YOLOv8 model
|
7 |
+
model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
|
|
|
8 |
|
9 |
+
# Get class names from model
|
10 |
+
class_names = model.names
|
|
|
|
|
11 |
|
|
|
12 |
|
13 |
+
@spaces.GPU(duration=60)
|
14 |
+
def process_image(image):
|
15 |
+
try:
|
16 |
+
# Process the image
|
17 |
+
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
18 |
+
result = results[0] # Get the first result
|
19 |
+
|
20 |
+
# Extract annotated image and labels with class names
|
21 |
+
annotated_image = result.plot()
|
22 |
+
|
23 |
+
# Use cls attribute for labels and get class name from model
|
24 |
+
detected_areas_labels = "\n".join([
|
25 |
+
f"{class_names[int(box.cls.item())].upper()}: {box.conf:.2f}" for box in result.boxes
|
26 |
+
])
|
27 |
+
|
28 |
+
return annotated_image, detected_areas_labels
|
29 |
+
except Exception as e:
|
30 |
+
return None, f"Error processing image: {e}"
|
31 |
+
|
32 |
+
# Create the Gradio Interface
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
|
35 |
+
# Input Components
|
36 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
37 |
+
|
38 |
+
# Output Components
|
39 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
40 |
output_text = gr.Textbox(label="Detected Areas and Labels")
|
41 |
|
42 |
+
# Button to trigger inference
|
43 |
+
btn = gr.Button("Run Document Segmentation")
|
44 |
+
btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text])
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Launch the demo with queuing
|
47 |
+
demo.queue(max_size=1).launch()
|