atlury commited on
Commit
0aa924d
·
verified ·
1 Parent(s): 34e259e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -45
app.py CHANGED
@@ -1,56 +1,47 @@
1
  import gradio as gr
2
  from ultralytics import YOLO
3
- import cv2
4
- import numpy as np
5
- import os
6
- import requests
7
  import torch
8
- import spaces # Import spaces to use ZeroGPU functionality
9
-
10
- # Ensure the model file is in the correct location
11
- model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
12
- if not os.path.exists(model_path):
13
- # Download the model file if it doesn't exist
14
- model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
15
- response = requests.get(model_url)
16
- with open(model_path, "wb") as f:
17
- f.write(response.content)
18
-
19
- # Load the document segmentation model
20
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
21
- docseg_model = YOLO(model_path).to(device)
22
-
23
- @spaces.GPU
24
- def process_image(image):
25
- # Convert image to the format YOLO model expects
26
- image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
27
- results = docseg_model(image)
28
 
29
- # Extract annotated image from results
30
- annotated_img = results[0].plot()
31
- annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
32
 
33
- # Prepare detected areas and labels as text output
34
- detected_areas_labels = "\n".join(
35
- [f"{box.label}: {box.conf:.2f}" for box in results[0].boxes]
36
- )
37
 
38
- return annotated_img, detected_areas_labels
39
 
40
- # Define the Gradio interface
41
- with gr.Blocks() as interface:
42
- gr.Markdown("### Document Segmentation using YOLOv8")
43
- input_image = gr.Image(type="pil", label="Input Image")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  output_image = gr.Image(type="pil", label="Annotated Image")
45
  output_text = gr.Textbox(label="Detected Areas and Labels")
46
 
47
- gr.Button("Run").click(
48
- fn=process_image,
49
- inputs=input_image,
50
- outputs=[output_image, output_text]
51
- )
52
-
53
- interface.launch()
54
 
55
- if __name__ == "__main__":
56
- interface.launch()
 
1
  import gradio as gr
2
  from ultralytics import YOLO
3
+ import spaces
 
 
 
4
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Load pre-trained YOLOv8 model
7
+ model = YOLO("yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt")
 
8
 
9
+ # Get class names from model
10
+ class_names = model.names
 
 
11
 
 
12
 
13
+ @spaces.GPU(duration=60)
14
+ def process_image(image):
15
+ try:
16
+ # Process the image
17
+ results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
18
+ result = results[0] # Get the first result
19
+
20
+ # Extract annotated image and labels with class names
21
+ annotated_image = result.plot()
22
+
23
+ # Use cls attribute for labels and get class name from model
24
+ detected_areas_labels = "\n".join([
25
+ f"{class_names[int(box.cls.item())].upper()}: {box.conf:.2f}" for box in result.boxes
26
+ ])
27
+
28
+ return annotated_image, detected_areas_labels
29
+ except Exception as e:
30
+ return None, f"Error processing image: {e}"
31
+
32
+ # Create the Gradio Interface
33
+ with gr.Blocks() as demo:
34
+ gr.Markdown("# Document Segmentation Demo (ZeroGPU)")
35
+ # Input Components
36
+ input_image = gr.Image(type="pil", label="Upload Image")
37
+
38
+ # Output Components
39
  output_image = gr.Image(type="pil", label="Annotated Image")
40
  output_text = gr.Textbox(label="Detected Areas and Labels")
41
 
42
+ # Button to trigger inference
43
+ btn = gr.Button("Run Document Segmentation")
44
+ btn.click(fn=process_image, inputs=input_image, outputs=[output_image, output_text])
 
 
 
 
45
 
46
+ # Launch the demo with queuing
47
+ demo.queue(max_size=1).launch()