Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
import os | |
import requests | |
import torch | |
import huggingface_hub | |
from accelerate import Accelerator | |
from huggingface_hub import notebook_login # Added this for HF login | |
from huggingface_hub.utils import HfHubHTTPError # Added this to catch HF login errors | |
# Initialize Hugging Face Hub login | |
notebook_login() | |
# Initialize Accelerator | |
accelerator = Accelerator() | |
# Load the model file | |
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
if not os.path.exists(model_path): | |
# Download the model file if it doesn't exist | |
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
try: | |
response = requests.get(model_url) | |
with open(model_path, "wb") as f: | |
f.write(response.content) | |
except HfHubHTTPError as e: | |
if e.response.status_code == 401: | |
print("Authentication error. Please login to Hugging Face Hub.") | |
else: | |
raise e | |
# Load the document segmentation model | |
docseg_model = YOLO(model_path) | |
docseg_model = accelerator.prepare(docseg_model) | |
def process_image(image): | |
try: | |
# Convert image to the format YOLO model expects | |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
# Move image to accelerator | |
image = torch.from_numpy(image).to(accelerator.device) | |
results = docseg_model.predict(image) | |
result = results[0] # Get the first (and usually only) result | |
# Extract annotated image from results | |
annotated_img = result.plot() | |
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) | |
# Prepare detected areas and labels as text output | |
detected_areas_labels = "\n".join( | |
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes] | |
) | |
except Exception as e: | |
return None, f"Error during processing: {e}" # Error handling | |
return annotated_img, detected_areas_labels | |
# The rest of the code remains the same (Gradio interface) | |