Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from ultralytics import YOLO | |
| import cv2 | |
| import numpy as np | |
| import os | |
| import requests | |
| import torch | |
| import huggingface_hub | |
| from accelerate import Accelerator | |
| from huggingface_hub import notebook_login # Added this for HF login | |
| from huggingface_hub.utils import HfHubHTTPError # Added this to catch HF login errors | |
| # Initialize Hugging Face Hub login | |
| notebook_login() | |
| # Initialize Accelerator | |
| accelerator = Accelerator() | |
| # Load the model file | |
| model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
| if not os.path.exists(model_path): | |
| # Download the model file if it doesn't exist | |
| model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
| try: | |
| response = requests.get(model_url) | |
| with open(model_path, "wb") as f: | |
| f.write(response.content) | |
| except HfHubHTTPError as e: | |
| if e.response.status_code == 401: | |
| print("Authentication error. Please login to Hugging Face Hub.") | |
| else: | |
| raise e | |
| # Load the document segmentation model | |
| docseg_model = YOLO(model_path) | |
| docseg_model = accelerator.prepare(docseg_model) | |
| def process_image(image): | |
| try: | |
| # Convert image to the format YOLO model expects | |
| image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
| # Move image to accelerator | |
| image = torch.from_numpy(image).to(accelerator.device) | |
| results = docseg_model.predict(image) | |
| result = results[0] # Get the first (and usually only) result | |
| # Extract annotated image from results | |
| annotated_img = result.plot() | |
| annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) | |
| # Prepare detected areas and labels as text output | |
| detected_areas_labels = "\n".join( | |
| [f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes] | |
| ) | |
| except Exception as e: | |
| return None, f"Error during processing: {e}" # Error handling | |
| return annotated_img, detected_areas_labels | |
| # The rest of the code remains the same (Gradio interface) | |