atlury's picture
Update app.py
778225c verified
raw
history blame
1.83 kB
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
import os
import requests
import torch
# Ensure the model file is in the correct location
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
if not os.path.exists(model_path):
# Download the model file if it doesn't exist
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
response = requests.get(model_url)
with open(model_path, "wb") as f:
f.write(response.content)
# Load the document segmentation model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
docseg_model = YOLO(model_path).to(device)
def process_image(image):
# Convert image to the format YOLO model expects
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
results = docseg_model(image)
# Extract annotated image from results
annotated_img = results[0].plot()
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
# Prepare detected areas and labels as text output
detected_areas_labels = "\n".join(
[f"{box.label}: {box.conf:.2f}" for box in results[0].boxes]
)
return annotated_img, detected_areas_labels
# Define the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("### Document Segmentation using YOLOv8")
input_image = gr.Image(type="pil", label="Input Image")
output_image = gr.Image(type="pil", label="Annotated Image")
output_text = gr.Textbox(label="Detected Areas and Labels")
gr.Button("Run").click(
fn=process_image,
inputs=input_image,
outputs=[output_image, output_text]
)
interface.launch()
if __name__ == "__main__":
interface.launch()