Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import numpy as np | |
import os | |
import requests | |
import torch | |
import spaces # Import spaces to use ZeroGPU functionality | |
# Ensure the model file is in the correct location | |
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
if not os.path.exists(model_path): | |
# Download the model file if it doesn't exist | |
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt" | |
response = requests.get(model_url) | |
with open(model_path, "wb") as f: | |
f.write(response.content) | |
# Load the document segmentation model | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
docseg_model = YOLO(model_path).to(device) | |
def process_image(image): | |
# Convert image to the format YOLO model expects | |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
results = docseg_model(image) | |
# Extract annotated image from results | |
annotated_img = results[0].plot() | |
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB) | |
# Prepare detected areas and labels as text output | |
detected_areas_labels = "\n".join( | |
[f"{box.label}: {box.conf:.2f}" for box in results[0].boxes] | |
) | |
return annotated_img, detected_areas_labels | |
# Define the Gradio interface | |
with gr.Blocks() as interface: | |
gr.Markdown("### Document Segmentation using YOLOv8") | |
input_image = gr.Image(type="pil", label="Input Image") | |
output_image = gr.Image(type="pil", label="Annotated Image") | |
output_text = gr.Textbox(label="Detected Areas and Labels") | |
gr.Button("Run").click( | |
fn=process_image, | |
inputs=input_image, | |
outputs=[output_image, output_text] | |
) | |
interface.launch() | |
if __name__ == "__main__": | |
interface.launch() | |