Implemented one-vs-all leaderboard
Browse files- app.py +49 -28
- darija_leaderboard_multilingual.json +1 -1376
- requirements.txt +6 -5
- utils.py +197 -49
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
from utils import (
|
4 |
update_leaderboard_multilingual,
|
|
|
5 |
handle_evaluation,
|
6 |
process_results_file,
|
7 |
create_html_image,
|
8 |
)
|
|
|
9 |
from datasets import load_dataset
|
10 |
import gradio as gr
|
11 |
|
12 |
if __name__ == "__main__":
|
|
|
13 |
# Evaluation dataset path
|
14 |
-
DATA_PATH = "atlasia/
|
|
|
15 |
# All Metrics
|
16 |
metrics = [
|
17 |
'f1_score',
|
@@ -43,9 +45,12 @@ if __name__ == "__main__":
|
|
43 |
|
44 |
# Load test dataset
|
45 |
test_dataset = load_dataset(DATA_PATH, split='test')
|
46 |
-
# Supported dialects
|
47 |
-
supported_dialects = list(test_dataset.unique("dialect")) + ['All']
|
48 |
|
|
|
|
|
|
|
|
|
|
|
49 |
with gr.Blocks() as app:
|
50 |
base_path = os.path.dirname(__file__)
|
51 |
local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png')
|
@@ -99,25 +104,26 @@ if __name__ == "__main__":
|
|
99 |
A kind of one-vs-all approach for evaluating LID models across multiple arabic dialects.
|
100 |
Computes the `false_positive_rate` of different models for a given target language.
|
101 |
This should help you understand how well a model can identify a specific dialect by
|
102 |
-
showing how often it misclassifies other dialects as the target dialect
|
103 |
"""
|
104 |
)
|
105 |
|
106 |
-
with gr.
|
107 |
-
gr.
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
gr.
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
|
122 |
with gr.Row():
|
123 |
binary_leaderboard_table = gr.DataFrame(
|
@@ -135,7 +141,14 @@ if __name__ == "__main__":
|
|
135 |
use_mapping = gr.Checkbox(label="Does not map to country")
|
136 |
eval_button = gr.Button("Evaluate", value=False) # Initially disabled
|
137 |
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
with gr.Tab("Upload your results"):
|
141 |
|
@@ -160,8 +173,10 @@ if __name__ == "__main__":
|
|
160 |
|
161 |
```
|
162 |
"""
|
|
|
163 |
gr.Markdown("## Upload your results to the leaderboard 🚀")
|
164 |
gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.")
|
|
|
165 |
gr.Markdown(code_snippet)
|
166 |
|
167 |
uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name')
|
@@ -184,18 +199,24 @@ if __name__ == "__main__":
|
|
184 |
|
185 |
# Update binary table when any input changes
|
186 |
target_language_selector.change(
|
187 |
-
|
188 |
-
inputs=[
|
189 |
-
outputs=
|
190 |
)
|
191 |
|
192 |
languages_checkboxes.change(
|
193 |
-
|
194 |
-
inputs=[
|
195 |
-
outputs=
|
196 |
)
|
197 |
|
198 |
# Define load event to run at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
app.load(
|
200 |
update_leaderboard_multilingual,
|
201 |
inputs=[country_selector, metric_checkboxes],
|
|
|
|
|
|
|
1 |
from utils import (
|
2 |
update_leaderboard_multilingual,
|
3 |
+
update_leaderboard_one_vs_all,
|
4 |
handle_evaluation,
|
5 |
process_results_file,
|
6 |
create_html_image,
|
7 |
)
|
8 |
+
import os
|
9 |
from datasets import load_dataset
|
10 |
import gradio as gr
|
11 |
|
12 |
if __name__ == "__main__":
|
13 |
+
|
14 |
# Evaluation dataset path
|
15 |
+
DATA_PATH = "atlasia/Arabic-LID-Leaderboard"
|
16 |
+
|
17 |
# All Metrics
|
18 |
metrics = [
|
19 |
'f1_score',
|
|
|
45 |
|
46 |
# Load test dataset
|
47 |
test_dataset = load_dataset(DATA_PATH, split='test')
|
|
|
|
|
48 |
|
49 |
+
# Supported dialects
|
50 |
+
all_target_languages = list(test_dataset.unique("dialect"))
|
51 |
+
supported_dialects = all_target_languages + ['All']
|
52 |
+
languages_to_display_one_vs_all = all_target_languages # everything except All
|
53 |
+
|
54 |
with gr.Blocks() as app:
|
55 |
base_path = os.path.dirname(__file__)
|
56 |
local_image_path = os.path.join(base_path, 'open_arabic_lid_arena.png')
|
|
|
104 |
A kind of one-vs-all approach for evaluating LID models across multiple arabic dialects.
|
105 |
Computes the `false_positive_rate` of different models for a given target language.
|
106 |
This should help you understand how well a model can identify a specific dialect by
|
107 |
+
showing **how often it misclassifies other dialects as the target dialect**.
|
108 |
"""
|
109 |
)
|
110 |
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column(scale=1):
|
113 |
+
gr.Markdown("### Select your target language")
|
114 |
+
target_language_selector = gr.Dropdown(
|
115 |
+
choices=languages_to_display_one_vs_all,
|
116 |
+
value='Morocco', # Default to Morocco of course
|
117 |
+
label="Target Language"
|
118 |
+
)
|
119 |
+
|
120 |
+
with gr.Column(scale=2):
|
121 |
+
gr.Markdown("### Select languages to compare to")
|
122 |
+
languages_checkboxes = gr.CheckboxGroup(
|
123 |
+
choices=languages_to_display_one_vs_all,
|
124 |
+
value=default_languages,
|
125 |
+
label="Languages"
|
126 |
+
)
|
127 |
|
128 |
with gr.Row():
|
129 |
binary_leaderboard_table = gr.DataFrame(
|
|
|
141 |
use_mapping = gr.Checkbox(label="Does not map to country")
|
142 |
eval_button = gr.Button("Evaluate", value=False) # Initially disabled
|
143 |
|
144 |
+
# Status message area
|
145 |
+
status_message = gr.Markdown(value="")
|
146 |
+
def update_status_message():
|
147 |
+
return "### **⚠️Evaluating... Please wait...**"
|
148 |
+
|
149 |
+
eval_button.click(update_status_message, outputs=[status_message])
|
150 |
+
|
151 |
+
eval_button.click(handle_evaluation, inputs=[model_path, model_path_bin, use_mapping], outputs=[leaderboard_table, status_message])
|
152 |
|
153 |
with gr.Tab("Upload your results"):
|
154 |
|
|
|
173 |
|
174 |
```
|
175 |
"""
|
176 |
+
|
177 |
gr.Markdown("## Upload your results to the leaderboard 🚀")
|
178 |
gr.Markdown("### Submission guidelines: Run the test dataset on your model and save the results in a CSV file. Bellow a code snippet to help you with that.")
|
179 |
+
gr.Markdown("### Nota Bene: The One-vs-All leaderboard evaluation is currently unavailable with the csv upload but will be implemented soon. Stay tuned!")
|
180 |
gr.Markdown(code_snippet)
|
181 |
|
182 |
uploaded_model_name = gr.Textbox(label="Model name", placeholder='Your model/team name')
|
|
|
199 |
|
200 |
# Update binary table when any input changes
|
201 |
target_language_selector.change(
|
202 |
+
update_leaderboard_one_vs_all,
|
203 |
+
inputs=[target_language_selector, languages_checkboxes],
|
204 |
+
outputs=[binary_leaderboard_table, languages_checkboxes]
|
205 |
)
|
206 |
|
207 |
languages_checkboxes.change(
|
208 |
+
update_leaderboard_one_vs_all,
|
209 |
+
inputs=[target_language_selector, languages_checkboxes],
|
210 |
+
outputs=[binary_leaderboard_table, languages_checkboxes]
|
211 |
)
|
212 |
|
213 |
# Define load event to run at startup
|
214 |
+
app.load(
|
215 |
+
update_leaderboard_one_vs_all,
|
216 |
+
inputs=[target_language_selector, languages_checkboxes],
|
217 |
+
outputs=[binary_leaderboard_table, languages_checkboxes]
|
218 |
+
)
|
219 |
+
|
220 |
app.load(
|
221 |
update_leaderboard_multilingual,
|
222 |
inputs=[country_selector, metric_checkboxes],
|
darija_leaderboard_multilingual.json
CHANGED
@@ -1,1378 +1,3 @@
|
|
1 |
[
|
2 |
-
|
3 |
-
"MSA": {
|
4 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
5 |
-
"f1_score": 0.9749,
|
6 |
-
"precision": 0.9908,
|
7 |
-
"recall": 0.9594,
|
8 |
-
"specificity": 0.9942,
|
9 |
-
"false_positive_rate": 0.0058,
|
10 |
-
"false_negative_rate": 0.0406,
|
11 |
-
"negative_predictive_value": 0.974,
|
12 |
-
"n_test_samples": 54390
|
13 |
-
},
|
14 |
-
"cis-lmu/glotlid/model.bin": {
|
15 |
-
"f1_score": 0.9554,
|
16 |
-
"precision": 0.9252,
|
17 |
-
"recall": 0.9876,
|
18 |
-
"specificity": 0.9478,
|
19 |
-
"false_positive_rate": 0.0522,
|
20 |
-
"false_negative_rate": 0.0124,
|
21 |
-
"negative_predictive_value": 0.9915,
|
22 |
-
"n_test_samples": 54390
|
23 |
-
},
|
24 |
-
"laurievb/OpenLID/model.bin": {
|
25 |
-
"f1_score": 0.9264,
|
26 |
-
"precision": 0.9359,
|
27 |
-
"recall": 0.9172,
|
28 |
-
"specificity": 0.9589,
|
29 |
-
"false_positive_rate": 0.0411,
|
30 |
-
"false_negative_rate": 0.0828,
|
31 |
-
"negative_predictive_value": 0.9465,
|
32 |
-
"n_test_samples": 54390
|
33 |
-
},
|
34 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
35 |
-
"f1_score": 0.0,
|
36 |
-
"precision": 0.0,
|
37 |
-
"recall": 0.0,
|
38 |
-
"specificity": 1.0,
|
39 |
-
"false_positive_rate": 0.0,
|
40 |
-
"false_negative_rate": 1.0,
|
41 |
-
"negative_predictive_value": 0.6047,
|
42 |
-
"n_test_samples": 54390
|
43 |
-
}
|
44 |
-
}
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"Pakistan": {
|
48 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
49 |
-
"f1_score": 0.9963,
|
50 |
-
"precision": 0.9999,
|
51 |
-
"recall": 0.9927,
|
52 |
-
"specificity": 0.9999,
|
53 |
-
"false_positive_rate": 0.0001,
|
54 |
-
"false_negative_rate": 0.0073,
|
55 |
-
"negative_predictive_value": 0.9958,
|
56 |
-
"n_test_samples": 50000
|
57 |
-
},
|
58 |
-
"cis-lmu/glotlid/model.bin": {
|
59 |
-
"f1_score": 0.999,
|
60 |
-
"precision": 0.9989,
|
61 |
-
"recall": 0.9991,
|
62 |
-
"specificity": 0.9994,
|
63 |
-
"false_positive_rate": 0.0006,
|
64 |
-
"false_negative_rate": 0.0009,
|
65 |
-
"negative_predictive_value": 0.9995,
|
66 |
-
"n_test_samples": 50000
|
67 |
-
},
|
68 |
-
"laurievb/OpenLID/model.bin": {
|
69 |
-
"f1_score": 0.9927,
|
70 |
-
"precision": 0.9928,
|
71 |
-
"recall": 0.9925,
|
72 |
-
"specificity": 0.9959,
|
73 |
-
"false_positive_rate": 0.0041,
|
74 |
-
"false_negative_rate": 0.0075,
|
75 |
-
"negative_predictive_value": 0.9957,
|
76 |
-
"n_test_samples": 50000
|
77 |
-
},
|
78 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
79 |
-
"f1_score": 0.0,
|
80 |
-
"precision": 0.0,
|
81 |
-
"recall": 0.0,
|
82 |
-
"specificity": 1.0,
|
83 |
-
"false_positive_rate": 0.0,
|
84 |
-
"false_negative_rate": 1.0,
|
85 |
-
"negative_predictive_value": 0.6366,
|
86 |
-
"n_test_samples": 50000
|
87 |
-
}
|
88 |
-
}
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"Morocco": {
|
92 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
93 |
-
"f1_score": 0.8789,
|
94 |
-
"precision": 0.8624,
|
95 |
-
"recall": 0.8961,
|
96 |
-
"specificity": 0.9771,
|
97 |
-
"false_positive_rate": 0.0229,
|
98 |
-
"false_negative_rate": 0.1039,
|
99 |
-
"negative_predictive_value": 0.9832,
|
100 |
-
"n_test_samples": 19005
|
101 |
-
},
|
102 |
-
"cis-lmu/glotlid/model.bin": {
|
103 |
-
"f1_score": 0.7172,
|
104 |
-
"precision": 0.9038,
|
105 |
-
"recall": 0.5945,
|
106 |
-
"specificity": 0.9899,
|
107 |
-
"false_positive_rate": 0.0101,
|
108 |
-
"false_negative_rate": 0.4055,
|
109 |
-
"negative_predictive_value": 0.9384,
|
110 |
-
"n_test_samples": 19005
|
111 |
-
},
|
112 |
-
"laurievb/OpenLID/model.bin": {
|
113 |
-
"f1_score": 0.6146,
|
114 |
-
"precision": 0.7279,
|
115 |
-
"recall": 0.5318,
|
116 |
-
"specificity": 0.9681,
|
117 |
-
"false_positive_rate": 0.0319,
|
118 |
-
"false_negative_rate": 0.4682,
|
119 |
-
"negative_predictive_value": 0.9281,
|
120 |
-
"n_test_samples": 19005
|
121 |
-
},
|
122 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
123 |
-
"f1_score": 0.8986,
|
124 |
-
"precision": 0.9166,
|
125 |
-
"recall": 0.8812,
|
126 |
-
"specificity": 0.9871,
|
127 |
-
"false_positive_rate": 0.0129,
|
128 |
-
"false_negative_rate": 0.1188,
|
129 |
-
"negative_predictive_value": 0.9811,
|
130 |
-
"n_test_samples": 19005
|
131 |
-
}
|
132 |
-
}
|
133 |
-
},
|
134 |
-
{
|
135 |
-
"Egypt": {
|
136 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
137 |
-
"f1_score": 0.5929,
|
138 |
-
"precision": 0.5835,
|
139 |
-
"recall": 0.6025,
|
140 |
-
"specificity": 0.993,
|
141 |
-
"false_positive_rate": 0.007,
|
142 |
-
"false_negative_rate": 0.3975,
|
143 |
-
"negative_predictive_value": 0.9935,
|
144 |
-
"n_test_samples": 2204
|
145 |
-
},
|
146 |
-
"cis-lmu/glotlid/model.bin": {
|
147 |
-
"f1_score": 0.6028,
|
148 |
-
"precision": 0.4837,
|
149 |
-
"recall": 0.7999,
|
150 |
-
"specificity": 0.9861,
|
151 |
-
"false_positive_rate": 0.0139,
|
152 |
-
"false_negative_rate": 0.2001,
|
153 |
-
"negative_predictive_value": 0.9967,
|
154 |
-
"n_test_samples": 2204
|
155 |
-
},
|
156 |
-
"laurievb/OpenLID/model.bin": {
|
157 |
-
"f1_score": 0.4094,
|
158 |
-
"precision": 0.2663,
|
159 |
-
"recall": 0.8843,
|
160 |
-
"specificity": 0.9603,
|
161 |
-
"false_positive_rate": 0.0397,
|
162 |
-
"false_negative_rate": 0.1157,
|
163 |
-
"negative_predictive_value": 0.998,
|
164 |
-
"n_test_samples": 2204
|
165 |
-
},
|
166 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
167 |
-
"f1_score": 0.0,
|
168 |
-
"precision": 0.0,
|
169 |
-
"recall": 0.0,
|
170 |
-
"specificity": 1.0,
|
171 |
-
"false_positive_rate": 0.0,
|
172 |
-
"false_negative_rate": 1.0,
|
173 |
-
"negative_predictive_value": 0.984,
|
174 |
-
"n_test_samples": 2204
|
175 |
-
}
|
176 |
-
}
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"Palestine": {
|
180 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
181 |
-
"f1_score": 0.2511,
|
182 |
-
"precision": 0.3352,
|
183 |
-
"recall": 0.2007,
|
184 |
-
"specificity": 0.9957,
|
185 |
-
"false_positive_rate": 0.0043,
|
186 |
-
"false_negative_rate": 0.7993,
|
187 |
-
"negative_predictive_value": 0.9914,
|
188 |
-
"n_test_samples": 1465
|
189 |
-
},
|
190 |
-
"cis-lmu/glotlid/model.bin": {
|
191 |
-
"f1_score": 0.0,
|
192 |
-
"precision": 0.0,
|
193 |
-
"recall": 0.0,
|
194 |
-
"specificity": 1.0,
|
195 |
-
"false_positive_rate": 0.0,
|
196 |
-
"false_negative_rate": 1.0,
|
197 |
-
"negative_predictive_value": 0.9894,
|
198 |
-
"n_test_samples": 1465
|
199 |
-
},
|
200 |
-
"laurievb/OpenLID/model.bin": {
|
201 |
-
"f1_score": 0.0,
|
202 |
-
"precision": 0.0,
|
203 |
-
"recall": 0.0,
|
204 |
-
"specificity": 1.0,
|
205 |
-
"false_positive_rate": 0.0,
|
206 |
-
"false_negative_rate": 1.0,
|
207 |
-
"negative_predictive_value": 0.9894,
|
208 |
-
"n_test_samples": 1465
|
209 |
-
},
|
210 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
211 |
-
"f1_score": 0.0,
|
212 |
-
"precision": 0.0,
|
213 |
-
"recall": 0.0,
|
214 |
-
"specificity": 1.0,
|
215 |
-
"false_positive_rate": 0.0,
|
216 |
-
"false_negative_rate": 1.0,
|
217 |
-
"negative_predictive_value": 0.9894,
|
218 |
-
"n_test_samples": 1465
|
219 |
-
}
|
220 |
-
}
|
221 |
-
},
|
222 |
-
{
|
223 |
-
"Levantine": {
|
224 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
225 |
-
"f1_score": 0.1723,
|
226 |
-
"precision": 0.1386,
|
227 |
-
"recall": 0.2275,
|
228 |
-
"specificity": 0.9854,
|
229 |
-
"false_positive_rate": 0.0146,
|
230 |
-
"false_negative_rate": 0.7725,
|
231 |
-
"negative_predictive_value": 0.992,
|
232 |
-
"n_test_samples": 1402
|
233 |
-
},
|
234 |
-
"cis-lmu/glotlid/model.bin": {
|
235 |
-
"f1_score": 0.1171,
|
236 |
-
"precision": 0.073,
|
237 |
-
"recall": 0.2953,
|
238 |
-
"specificity": 0.9614,
|
239 |
-
"false_positive_rate": 0.0386,
|
240 |
-
"false_negative_rate": 0.7047,
|
241 |
-
"negative_predictive_value": 0.9925,
|
242 |
-
"n_test_samples": 1402
|
243 |
-
},
|
244 |
-
"laurievb/OpenLID/model.bin": {
|
245 |
-
"f1_score": 0.1029,
|
246 |
-
"precision": 0.0645,
|
247 |
-
"recall": 0.2532,
|
248 |
-
"specificity": 0.9622,
|
249 |
-
"false_positive_rate": 0.0378,
|
250 |
-
"false_negative_rate": 0.7468,
|
251 |
-
"negative_predictive_value": 0.9921,
|
252 |
-
"n_test_samples": 1402
|
253 |
-
},
|
254 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
255 |
-
"f1_score": 0.0,
|
256 |
-
"precision": 0.0,
|
257 |
-
"recall": 0.0,
|
258 |
-
"specificity": 1.0,
|
259 |
-
"false_positive_rate": 0.0,
|
260 |
-
"false_negative_rate": 1.0,
|
261 |
-
"negative_predictive_value": 0.9898,
|
262 |
-
"n_test_samples": 1402
|
263 |
-
}
|
264 |
-
}
|
265 |
-
},
|
266 |
-
{
|
267 |
-
"Saudi": {
|
268 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
269 |
-
"f1_score": 0.4382,
|
270 |
-
"precision": 0.3474,
|
271 |
-
"recall": 0.5932,
|
272 |
-
"specificity": 0.9887,
|
273 |
-
"false_positive_rate": 0.0113,
|
274 |
-
"false_negative_rate": 0.4068,
|
275 |
-
"negative_predictive_value": 0.9958,
|
276 |
-
"n_test_samples": 1384
|
277 |
-
},
|
278 |
-
"cis-lmu/glotlid/model.bin": {
|
279 |
-
"f1_score": 0.3893,
|
280 |
-
"precision": 0.2692,
|
281 |
-
"recall": 0.703,
|
282 |
-
"specificity": 0.9806,
|
283 |
-
"false_positive_rate": 0.0194,
|
284 |
-
"false_negative_rate": 0.297,
|
285 |
-
"negative_predictive_value": 0.9969,
|
286 |
-
"n_test_samples": 1384
|
287 |
-
},
|
288 |
-
"laurievb/OpenLID/model.bin": {
|
289 |
-
"f1_score": 0.3436,
|
290 |
-
"precision": 0.2381,
|
291 |
-
"recall": 0.6171,
|
292 |
-
"specificity": 0.9799,
|
293 |
-
"false_positive_rate": 0.0201,
|
294 |
-
"false_negative_rate": 0.3829,
|
295 |
-
"negative_predictive_value": 0.996,
|
296 |
-
"n_test_samples": 1384
|
297 |
-
},
|
298 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
299 |
-
"f1_score": 0.0,
|
300 |
-
"precision": 0.0,
|
301 |
-
"recall": 0.0,
|
302 |
-
"specificity": 1.0,
|
303 |
-
"false_positive_rate": 0.0,
|
304 |
-
"false_negative_rate": 1.0,
|
305 |
-
"negative_predictive_value": 0.9899,
|
306 |
-
"n_test_samples": 1384
|
307 |
-
}
|
308 |
-
}
|
309 |
-
},
|
310 |
-
{
|
311 |
-
"Jordan": {
|
312 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
313 |
-
"f1_score": 0.2726,
|
314 |
-
"precision": 0.4203,
|
315 |
-
"recall": 0.2017,
|
316 |
-
"specificity": 0.9972,
|
317 |
-
"false_positive_rate": 0.0028,
|
318 |
-
"false_negative_rate": 0.7983,
|
319 |
-
"negative_predictive_value": 0.992,
|
320 |
-
"n_test_samples": 1373
|
321 |
-
},
|
322 |
-
"cis-lmu/glotlid/model.bin": {
|
323 |
-
"f1_score": 0.0,
|
324 |
-
"precision": 0.0,
|
325 |
-
"recall": 0.0,
|
326 |
-
"specificity": 1.0,
|
327 |
-
"false_positive_rate": 0.0,
|
328 |
-
"false_negative_rate": 1.0,
|
329 |
-
"negative_predictive_value": 0.99,
|
330 |
-
"n_test_samples": 1373
|
331 |
-
},
|
332 |
-
"laurievb/OpenLID/model.bin": {
|
333 |
-
"f1_score": 0.0,
|
334 |
-
"precision": 0.0,
|
335 |
-
"recall": 0.0,
|
336 |
-
"specificity": 1.0,
|
337 |
-
"false_positive_rate": 0.0,
|
338 |
-
"false_negative_rate": 1.0,
|
339 |
-
"negative_predictive_value": 0.99,
|
340 |
-
"n_test_samples": 1373
|
341 |
-
},
|
342 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
343 |
-
"f1_score": 0.0,
|
344 |
-
"precision": 0.0,
|
345 |
-
"recall": 0.0,
|
346 |
-
"specificity": 1.0,
|
347 |
-
"false_positive_rate": 0.0,
|
348 |
-
"false_negative_rate": 1.0,
|
349 |
-
"negative_predictive_value": 0.99,
|
350 |
-
"n_test_samples": 1373
|
351 |
-
}
|
352 |
-
}
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"Algeria": {
|
356 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
357 |
-
"f1_score": 0.5221,
|
358 |
-
"precision": 0.5849,
|
359 |
-
"recall": 0.4714,
|
360 |
-
"specificity": 0.9974,
|
361 |
-
"false_positive_rate": 0.0026,
|
362 |
-
"false_negative_rate": 0.5286,
|
363 |
-
"negative_predictive_value": 0.9959,
|
364 |
-
"n_test_samples": 1067
|
365 |
-
},
|
366 |
-
"cis-lmu/glotlid/model.bin": {
|
367 |
-
"f1_score": 0.1235,
|
368 |
-
"precision": 0.2751,
|
369 |
-
"recall": 0.0797,
|
370 |
-
"specificity": 0.9984,
|
371 |
-
"false_positive_rate": 0.0016,
|
372 |
-
"false_negative_rate": 0.9203,
|
373 |
-
"negative_predictive_value": 0.9928,
|
374 |
-
"n_test_samples": 1067
|
375 |
-
},
|
376 |
-
"laurievb/OpenLID/model.bin": {
|
377 |
-
"f1_score": 0.0,
|
378 |
-
"precision": 0.0,
|
379 |
-
"recall": 0.0,
|
380 |
-
"specificity": 1.0,
|
381 |
-
"false_positive_rate": 0.0,
|
382 |
-
"false_negative_rate": 1.0,
|
383 |
-
"negative_predictive_value": 0.9922,
|
384 |
-
"n_test_samples": 1067
|
385 |
-
},
|
386 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
387 |
-
"f1_score": 0.0,
|
388 |
-
"precision": 0.0,
|
389 |
-
"recall": 0.0,
|
390 |
-
"specificity": 1.0,
|
391 |
-
"false_positive_rate": 0.0,
|
392 |
-
"false_negative_rate": 1.0,
|
393 |
-
"negative_predictive_value": 0.9922,
|
394 |
-
"n_test_samples": 1067
|
395 |
-
}
|
396 |
-
}
|
397 |
-
},
|
398 |
-
{
|
399 |
-
"UAE": {
|
400 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
401 |
-
"f1_score": 0.3452,
|
402 |
-
"precision": 0.4207,
|
403 |
-
"recall": 0.2926,
|
404 |
-
"specificity": 0.9971,
|
405 |
-
"false_positive_rate": 0.0029,
|
406 |
-
"false_negative_rate": 0.7074,
|
407 |
-
"negative_predictive_value": 0.9948,
|
408 |
-
"n_test_samples": 998
|
409 |
-
},
|
410 |
-
"cis-lmu/glotlid/model.bin": {
|
411 |
-
"f1_score": 0.0,
|
412 |
-
"precision": 0.0,
|
413 |
-
"recall": 0.0,
|
414 |
-
"specificity": 1.0,
|
415 |
-
"false_positive_rate": 0.0,
|
416 |
-
"false_negative_rate": 1.0,
|
417 |
-
"negative_predictive_value": 0.9927,
|
418 |
-
"n_test_samples": 998
|
419 |
-
},
|
420 |
-
"laurievb/OpenLID/model.bin": {
|
421 |
-
"f1_score": 0.0,
|
422 |
-
"precision": 0.0,
|
423 |
-
"recall": 0.0,
|
424 |
-
"specificity": 1.0,
|
425 |
-
"false_positive_rate": 0.0,
|
426 |
-
"false_negative_rate": 1.0,
|
427 |
-
"negative_predictive_value": 0.9927,
|
428 |
-
"n_test_samples": 998
|
429 |
-
},
|
430 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
431 |
-
"f1_score": 0.0,
|
432 |
-
"precision": 0.0,
|
433 |
-
"recall": 0.0,
|
434 |
-
"specificity": 1.0,
|
435 |
-
"false_positive_rate": 0.0,
|
436 |
-
"false_negative_rate": 1.0,
|
437 |
-
"negative_predictive_value": 0.9927,
|
438 |
-
"n_test_samples": 998
|
439 |
-
}
|
440 |
-
}
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"Mauritania": {
|
444 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
445 |
-
"f1_score": 0.5343,
|
446 |
-
"precision": 0.944,
|
447 |
-
"recall": 0.3726,
|
448 |
-
"specificity": 0.9998,
|
449 |
-
"false_positive_rate": 0.0002,
|
450 |
-
"false_negative_rate": 0.6274,
|
451 |
-
"negative_predictive_value": 0.9957,
|
452 |
-
"n_test_samples": 950
|
453 |
-
},
|
454 |
-
"cis-lmu/glotlid/model.bin": {
|
455 |
-
"f1_score": 0.0,
|
456 |
-
"precision": 0.0,
|
457 |
-
"recall": 0.0,
|
458 |
-
"specificity": 1.0,
|
459 |
-
"false_positive_rate": 0.0,
|
460 |
-
"false_negative_rate": 1.0,
|
461 |
-
"negative_predictive_value": 0.9931,
|
462 |
-
"n_test_samples": 950
|
463 |
-
},
|
464 |
-
"laurievb/OpenLID/model.bin": {
|
465 |
-
"f1_score": 0.0,
|
466 |
-
"precision": 0.0,
|
467 |
-
"recall": 0.0,
|
468 |
-
"specificity": 1.0,
|
469 |
-
"false_positive_rate": 0.0,
|
470 |
-
"false_negative_rate": 1.0,
|
471 |
-
"negative_predictive_value": 0.9931,
|
472 |
-
"n_test_samples": 950
|
473 |
-
},
|
474 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
475 |
-
"f1_score": 0.0,
|
476 |
-
"precision": 0.0,
|
477 |
-
"recall": 0.0,
|
478 |
-
"specificity": 1.0,
|
479 |
-
"false_positive_rate": 0.0,
|
480 |
-
"false_negative_rate": 1.0,
|
481 |
-
"negative_predictive_value": 0.9931,
|
482 |
-
"n_test_samples": 950
|
483 |
-
}
|
484 |
-
}
|
485 |
-
},
|
486 |
-
{
|
487 |
-
"Yemen": {
|
488 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
489 |
-
"f1_score": 0.223,
|
490 |
-
"precision": 0.5619,
|
491 |
-
"recall": 0.1391,
|
492 |
-
"specificity": 0.9993,
|
493 |
-
"false_positive_rate": 0.0007,
|
494 |
-
"false_negative_rate": 0.8609,
|
495 |
-
"negative_predictive_value": 0.9943,
|
496 |
-
"n_test_samples": 913
|
497 |
-
},
|
498 |
-
"cis-lmu/glotlid/model.bin": {
|
499 |
-
"f1_score": 0.0,
|
500 |
-
"precision": 0.0,
|
501 |
-
"recall": 0.0,
|
502 |
-
"specificity": 1.0,
|
503 |
-
"false_positive_rate": 0.0,
|
504 |
-
"false_negative_rate": 1.0,
|
505 |
-
"negative_predictive_value": 0.9934,
|
506 |
-
"n_test_samples": 913
|
507 |
-
},
|
508 |
-
"laurievb/OpenLID/model.bin": {
|
509 |
-
"f1_score": 0.0,
|
510 |
-
"precision": 0.0,
|
511 |
-
"recall": 0.0,
|
512 |
-
"specificity": 1.0,
|
513 |
-
"false_positive_rate": 0.0,
|
514 |
-
"false_negative_rate": 1.0,
|
515 |
-
"negative_predictive_value": 0.9934,
|
516 |
-
"n_test_samples": 913
|
517 |
-
},
|
518 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
519 |
-
"f1_score": 0.0,
|
520 |
-
"precision": 0.0,
|
521 |
-
"recall": 0.0,
|
522 |
-
"specificity": 1.0,
|
523 |
-
"false_positive_rate": 0.0,
|
524 |
-
"false_negative_rate": 1.0,
|
525 |
-
"negative_predictive_value": 0.9934,
|
526 |
-
"n_test_samples": 913
|
527 |
-
}
|
528 |
-
}
|
529 |
-
},
|
530 |
-
{
|
531 |
-
"Syria": {
|
532 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
533 |
-
"f1_score": 0.1965,
|
534 |
-
"precision": 0.2126,
|
535 |
-
"recall": 0.1827,
|
536 |
-
"specificity": 0.9971,
|
537 |
-
"false_positive_rate": 0.0029,
|
538 |
-
"false_negative_rate": 0.8173,
|
539 |
-
"negative_predictive_value": 0.9965,
|
540 |
-
"n_test_samples": 591
|
541 |
-
},
|
542 |
-
"cis-lmu/glotlid/model.bin": {
|
543 |
-
"f1_score": 0.0,
|
544 |
-
"precision": 0.0,
|
545 |
-
"recall": 0.0,
|
546 |
-
"specificity": 1.0,
|
547 |
-
"false_positive_rate": 0.0,
|
548 |
-
"false_negative_rate": 1.0,
|
549 |
-
"negative_predictive_value": 0.9957,
|
550 |
-
"n_test_samples": 591
|
551 |
-
},
|
552 |
-
"laurievb/OpenLID/model.bin": {
|
553 |
-
"f1_score": 0.0,
|
554 |
-
"precision": 0.0,
|
555 |
-
"recall": 0.0,
|
556 |
-
"specificity": 1.0,
|
557 |
-
"false_positive_rate": 0.0,
|
558 |
-
"false_negative_rate": 1.0,
|
559 |
-
"negative_predictive_value": 0.9957,
|
560 |
-
"n_test_samples": 591
|
561 |
-
},
|
562 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
563 |
-
"f1_score": 0.0,
|
564 |
-
"precision": 0.0,
|
565 |
-
"recall": 0.0,
|
566 |
-
"specificity": 1.0,
|
567 |
-
"false_positive_rate": 0.0,
|
568 |
-
"false_negative_rate": 1.0,
|
569 |
-
"negative_predictive_value": 0.9957,
|
570 |
-
"n_test_samples": 591
|
571 |
-
}
|
572 |
-
}
|
573 |
-
},
|
574 |
-
{
|
575 |
-
"Lebanon": {
|
576 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
577 |
-
"f1_score": 0.2699,
|
578 |
-
"precision": 0.2133,
|
579 |
-
"recall": 0.3675,
|
580 |
-
"specificity": 0.9967,
|
581 |
-
"false_positive_rate": 0.0033,
|
582 |
-
"false_negative_rate": 0.6325,
|
583 |
-
"negative_predictive_value": 0.9985,
|
584 |
-
"n_test_samples": 332
|
585 |
-
},
|
586 |
-
"cis-lmu/glotlid/model.bin": {
|
587 |
-
"f1_score": 0.0,
|
588 |
-
"precision": 0.0,
|
589 |
-
"recall": 0.0,
|
590 |
-
"specificity": 1.0,
|
591 |
-
"false_positive_rate": 0.0,
|
592 |
-
"false_negative_rate": 1.0,
|
593 |
-
"negative_predictive_value": 0.9976,
|
594 |
-
"n_test_samples": 332
|
595 |
-
},
|
596 |
-
"laurievb/OpenLID/model.bin": {
|
597 |
-
"f1_score": 0.0,
|
598 |
-
"precision": 0.0,
|
599 |
-
"recall": 0.0,
|
600 |
-
"specificity": 1.0,
|
601 |
-
"false_positive_rate": 0.0,
|
602 |
-
"false_negative_rate": 1.0,
|
603 |
-
"negative_predictive_value": 0.9976,
|
604 |
-
"n_test_samples": 332
|
605 |
-
},
|
606 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
607 |
-
"f1_score": 0.0,
|
608 |
-
"precision": 0.0,
|
609 |
-
"recall": 0.0,
|
610 |
-
"specificity": 1.0,
|
611 |
-
"false_positive_rate": 0.0,
|
612 |
-
"false_negative_rate": 1.0,
|
613 |
-
"negative_predictive_value": 0.9976,
|
614 |
-
"n_test_samples": 332
|
615 |
-
}
|
616 |
-
}
|
617 |
-
},
|
618 |
-
{
|
619 |
-
"Qatar": {
|
620 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
621 |
-
"f1_score": 0.3145,
|
622 |
-
"precision": 0.2315,
|
623 |
-
"recall": 0.4905,
|
624 |
-
"specificity": 0.9975,
|
625 |
-
"false_positive_rate": 0.0025,
|
626 |
-
"false_negative_rate": 0.5095,
|
627 |
-
"negative_predictive_value": 0.9992,
|
628 |
-
"n_test_samples": 210
|
629 |
-
},
|
630 |
-
"cis-lmu/glotlid/model.bin": {
|
631 |
-
"f1_score": 0.0,
|
632 |
-
"precision": 0.0,
|
633 |
-
"recall": 0.0,
|
634 |
-
"specificity": 1.0,
|
635 |
-
"false_positive_rate": 0.0,
|
636 |
-
"false_negative_rate": 1.0,
|
637 |
-
"negative_predictive_value": 0.9985,
|
638 |
-
"n_test_samples": 210
|
639 |
-
},
|
640 |
-
"laurievb/OpenLID/model.bin": {
|
641 |
-
"f1_score": 0.0,
|
642 |
-
"precision": 0.0,
|
643 |
-
"recall": 0.0,
|
644 |
-
"specificity": 1.0,
|
645 |
-
"false_positive_rate": 0.0,
|
646 |
-
"false_negative_rate": 1.0,
|
647 |
-
"negative_predictive_value": 0.9985,
|
648 |
-
"n_test_samples": 210
|
649 |
-
},
|
650 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
651 |
-
"f1_score": 0.0,
|
652 |
-
"precision": 0.0,
|
653 |
-
"recall": 0.0,
|
654 |
-
"specificity": 1.0,
|
655 |
-
"false_positive_rate": 0.0,
|
656 |
-
"false_negative_rate": 1.0,
|
657 |
-
"negative_predictive_value": 0.9985,
|
658 |
-
"n_test_samples": 210
|
659 |
-
}
|
660 |
-
}
|
661 |
-
},
|
662 |
-
{
|
663 |
-
"Iraq": {
|
664 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
665 |
-
"f1_score": 0.4075,
|
666 |
-
"precision": 0.3884,
|
667 |
-
"recall": 0.4286,
|
668 |
-
"specificity": 0.999,
|
669 |
-
"false_positive_rate": 0.001,
|
670 |
-
"false_negative_rate": 0.5714,
|
671 |
-
"negative_predictive_value": 0.9992,
|
672 |
-
"n_test_samples": 203
|
673 |
-
},
|
674 |
-
"cis-lmu/glotlid/model.bin": {
|
675 |
-
"f1_score": 0.0098,
|
676 |
-
"precision": 1.0,
|
677 |
-
"recall": 0.0049,
|
678 |
-
"specificity": 1.0,
|
679 |
-
"false_positive_rate": 0.0,
|
680 |
-
"false_negative_rate": 0.9951,
|
681 |
-
"negative_predictive_value": 0.9985,
|
682 |
-
"n_test_samples": 203
|
683 |
-
},
|
684 |
-
"laurievb/OpenLID/model.bin": {
|
685 |
-
"f1_score": 0.0,
|
686 |
-
"precision": 0.0,
|
687 |
-
"recall": 0.0,
|
688 |
-
"specificity": 1.0,
|
689 |
-
"false_positive_rate": 0.0,
|
690 |
-
"false_negative_rate": 1.0,
|
691 |
-
"negative_predictive_value": 0.9985,
|
692 |
-
"n_test_samples": 203
|
693 |
-
},
|
694 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
695 |
-
"f1_score": 0.0,
|
696 |
-
"precision": 0.0,
|
697 |
-
"recall": 0.0,
|
698 |
-
"specificity": 1.0,
|
699 |
-
"false_positive_rate": 0.0,
|
700 |
-
"false_negative_rate": 1.0,
|
701 |
-
"negative_predictive_value": 0.9985,
|
702 |
-
"n_test_samples": 203
|
703 |
-
}
|
704 |
-
}
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"Libya": {
|
708 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
709 |
-
"f1_score": 0.357,
|
710 |
-
"precision": 0.2621,
|
711 |
-
"recall": 0.5596,
|
712 |
-
"specificity": 0.9978,
|
713 |
-
"false_positive_rate": 0.0022,
|
714 |
-
"false_negative_rate": 0.4404,
|
715 |
-
"negative_predictive_value": 0.9994,
|
716 |
-
"n_test_samples": 193
|
717 |
-
},
|
718 |
-
"cis-lmu/glotlid/model.bin": {
|
719 |
-
"f1_score": 0.0,
|
720 |
-
"precision": 0.0,
|
721 |
-
"recall": 0.0,
|
722 |
-
"specificity": 1.0,
|
723 |
-
"false_positive_rate": 0.0,
|
724 |
-
"false_negative_rate": 1.0,
|
725 |
-
"negative_predictive_value": 0.9986,
|
726 |
-
"n_test_samples": 193
|
727 |
-
},
|
728 |
-
"laurievb/OpenLID/model.bin": {
|
729 |
-
"f1_score": 0.0,
|
730 |
-
"precision": 0.0,
|
731 |
-
"recall": 0.0,
|
732 |
-
"specificity": 1.0,
|
733 |
-
"false_positive_rate": 0.0,
|
734 |
-
"false_negative_rate": 1.0,
|
735 |
-
"negative_predictive_value": 0.9986,
|
736 |
-
"n_test_samples": 193
|
737 |
-
},
|
738 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
739 |
-
"f1_score": 0.0,
|
740 |
-
"precision": 0.0,
|
741 |
-
"recall": 0.0,
|
742 |
-
"specificity": 1.0,
|
743 |
-
"false_positive_rate": 0.0,
|
744 |
-
"false_negative_rate": 1.0,
|
745 |
-
"negative_predictive_value": 0.9986,
|
746 |
-
"n_test_samples": 193
|
747 |
-
}
|
748 |
-
}
|
749 |
-
},
|
750 |
-
{
|
751 |
-
"Tunisia": {
|
752 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
753 |
-
"f1_score": 0.1851,
|
754 |
-
"precision": 0.1089,
|
755 |
-
"recall": 0.6158,
|
756 |
-
"specificity": 0.993,
|
757 |
-
"false_positive_rate": 0.007,
|
758 |
-
"false_negative_rate": 0.3842,
|
759 |
-
"negative_predictive_value": 0.9995,
|
760 |
-
"n_test_samples": 190
|
761 |
-
},
|
762 |
-
"cis-lmu/glotlid/model.bin": {
|
763 |
-
"f1_score": 0.1143,
|
764 |
-
"precision": 0.0624,
|
765 |
-
"recall": 0.6737,
|
766 |
-
"specificity": 0.986,
|
767 |
-
"false_positive_rate": 0.014,
|
768 |
-
"false_negative_rate": 0.3263,
|
769 |
-
"negative_predictive_value": 0.9995,
|
770 |
-
"n_test_samples": 190
|
771 |
-
},
|
772 |
-
"laurievb/OpenLID/model.bin": {
|
773 |
-
"f1_score": 0.1045,
|
774 |
-
"precision": 0.0564,
|
775 |
-
"recall": 0.7053,
|
776 |
-
"specificity": 0.9837,
|
777 |
-
"false_positive_rate": 0.0163,
|
778 |
-
"false_negative_rate": 0.2947,
|
779 |
-
"negative_predictive_value": 0.9996,
|
780 |
-
"n_test_samples": 190
|
781 |
-
},
|
782 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
783 |
-
"f1_score": 0.0,
|
784 |
-
"precision": 0.0,
|
785 |
-
"recall": 0.0,
|
786 |
-
"specificity": 1.0,
|
787 |
-
"false_positive_rate": 0.0,
|
788 |
-
"false_negative_rate": 1.0,
|
789 |
-
"negative_predictive_value": 0.9986,
|
790 |
-
"n_test_samples": 190
|
791 |
-
}
|
792 |
-
}
|
793 |
-
},
|
794 |
-
{
|
795 |
-
"Oman": {
|
796 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
797 |
-
"f1_score": 0.1969,
|
798 |
-
"precision": 0.1391,
|
799 |
-
"recall": 0.3368,
|
800 |
-
"specificity": 0.9971,
|
801 |
-
"false_positive_rate": 0.0029,
|
802 |
-
"false_negative_rate": 0.6632,
|
803 |
-
"negative_predictive_value": 0.9991,
|
804 |
-
"n_test_samples": 190
|
805 |
-
},
|
806 |
-
"cis-lmu/glotlid/model.bin": {
|
807 |
-
"f1_score": 0.0,
|
808 |
-
"precision": 0.0,
|
809 |
-
"recall": 0.0,
|
810 |
-
"specificity": 1.0,
|
811 |
-
"false_positive_rate": 0.0,
|
812 |
-
"false_negative_rate": 1.0,
|
813 |
-
"negative_predictive_value": 0.9986,
|
814 |
-
"n_test_samples": 190
|
815 |
-
},
|
816 |
-
"laurievb/OpenLID/model.bin": {
|
817 |
-
"f1_score": 0.0,
|
818 |
-
"precision": 0.0,
|
819 |
-
"recall": 0.0,
|
820 |
-
"specificity": 1.0,
|
821 |
-
"false_positive_rate": 0.0,
|
822 |
-
"false_negative_rate": 1.0,
|
823 |
-
"negative_predictive_value": 0.9986,
|
824 |
-
"n_test_samples": 190
|
825 |
-
},
|
826 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
827 |
-
"f1_score": 0.0,
|
828 |
-
"precision": 0.0,
|
829 |
-
"recall": 0.0,
|
830 |
-
"specificity": 1.0,
|
831 |
-
"false_positive_rate": 0.0,
|
832 |
-
"false_negative_rate": 1.0,
|
833 |
-
"negative_predictive_value": 0.9986,
|
834 |
-
"n_test_samples": 190
|
835 |
-
}
|
836 |
-
}
|
837 |
-
},
|
838 |
-
{
|
839 |
-
"Kuwait": {
|
840 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
841 |
-
"f1_score": 0.29,
|
842 |
-
"precision": 0.2091,
|
843 |
-
"recall": 0.4728,
|
844 |
-
"specificity": 0.9976,
|
845 |
-
"false_positive_rate": 0.0024,
|
846 |
-
"false_negative_rate": 0.5272,
|
847 |
-
"negative_predictive_value": 0.9993,
|
848 |
-
"n_test_samples": 184
|
849 |
-
},
|
850 |
-
"cis-lmu/glotlid/model.bin": {
|
851 |
-
"f1_score": 0.0,
|
852 |
-
"precision": 0.0,
|
853 |
-
"recall": 0.0,
|
854 |
-
"specificity": 1.0,
|
855 |
-
"false_positive_rate": 0.0,
|
856 |
-
"false_negative_rate": 1.0,
|
857 |
-
"negative_predictive_value": 0.9987,
|
858 |
-
"n_test_samples": 184
|
859 |
-
},
|
860 |
-
"laurievb/OpenLID/model.bin": {
|
861 |
-
"f1_score": 0.0,
|
862 |
-
"precision": 0.0,
|
863 |
-
"recall": 0.0,
|
864 |
-
"specificity": 1.0,
|
865 |
-
"false_positive_rate": 0.0,
|
866 |
-
"false_negative_rate": 1.0,
|
867 |
-
"negative_predictive_value": 0.9987,
|
868 |
-
"n_test_samples": 184
|
869 |
-
},
|
870 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
871 |
-
"f1_score": 0.0,
|
872 |
-
"precision": 0.0,
|
873 |
-
"recall": 0.0,
|
874 |
-
"specificity": 1.0,
|
875 |
-
"false_positive_rate": 0.0,
|
876 |
-
"false_negative_rate": 1.0,
|
877 |
-
"negative_predictive_value": 0.9987,
|
878 |
-
"n_test_samples": 184
|
879 |
-
}
|
880 |
-
}
|
881 |
-
},
|
882 |
-
{
|
883 |
-
"Bahrain": {
|
884 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
885 |
-
"f1_score": 0.2045,
|
886 |
-
"precision": 0.2069,
|
887 |
-
"recall": 0.2022,
|
888 |
-
"specificity": 0.999,
|
889 |
-
"false_positive_rate": 0.001,
|
890 |
-
"false_negative_rate": 0.7978,
|
891 |
-
"negative_predictive_value": 0.999,
|
892 |
-
"n_test_samples": 178
|
893 |
-
},
|
894 |
-
"cis-lmu/glotlid/model.bin": {
|
895 |
-
"f1_score": 0.0,
|
896 |
-
"precision": 0.0,
|
897 |
-
"recall": 0.0,
|
898 |
-
"specificity": 1.0,
|
899 |
-
"false_positive_rate": 0.0,
|
900 |
-
"false_negative_rate": 1.0,
|
901 |
-
"negative_predictive_value": 0.9987,
|
902 |
-
"n_test_samples": 178
|
903 |
-
},
|
904 |
-
"laurievb/OpenLID/model.bin": {
|
905 |
-
"f1_score": 0.0,
|
906 |
-
"precision": 0.0,
|
907 |
-
"recall": 0.0,
|
908 |
-
"specificity": 1.0,
|
909 |
-
"false_positive_rate": 0.0,
|
910 |
-
"false_negative_rate": 1.0,
|
911 |
-
"negative_predictive_value": 0.9987,
|
912 |
-
"n_test_samples": 178
|
913 |
-
},
|
914 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
915 |
-
"f1_score": 0.0,
|
916 |
-
"precision": 0.0,
|
917 |
-
"recall": 0.0,
|
918 |
-
"specificity": 1.0,
|
919 |
-
"false_positive_rate": 0.0,
|
920 |
-
"false_negative_rate": 1.0,
|
921 |
-
"negative_predictive_value": 0.9987,
|
922 |
-
"n_test_samples": 178
|
923 |
-
}
|
924 |
-
}
|
925 |
-
},
|
926 |
-
{
|
927 |
-
"Sudan": {
|
928 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
929 |
-
"f1_score": 0.395,
|
930 |
-
"precision": 0.3198,
|
931 |
-
"recall": 0.5163,
|
932 |
-
"specificity": 0.9988,
|
933 |
-
"false_positive_rate": 0.0012,
|
934 |
-
"false_negative_rate": 0.4837,
|
935 |
-
"negative_predictive_value": 0.9995,
|
936 |
-
"n_test_samples": 153
|
937 |
-
},
|
938 |
-
"cis-lmu/glotlid/model.bin": {
|
939 |
-
"f1_score": 0.0,
|
940 |
-
"precision": 0.0,
|
941 |
-
"recall": 0.0,
|
942 |
-
"specificity": 1.0,
|
943 |
-
"false_positive_rate": 0.0,
|
944 |
-
"false_negative_rate": 1.0,
|
945 |
-
"negative_predictive_value": 0.9989,
|
946 |
-
"n_test_samples": 153
|
947 |
-
},
|
948 |
-
"laurievb/OpenLID/model.bin": {
|
949 |
-
"f1_score": 0.0,
|
950 |
-
"precision": 0.0,
|
951 |
-
"recall": 0.0,
|
952 |
-
"specificity": 1.0,
|
953 |
-
"false_positive_rate": 0.0,
|
954 |
-
"false_negative_rate": 1.0,
|
955 |
-
"negative_predictive_value": 0.9989,
|
956 |
-
"n_test_samples": 153
|
957 |
-
},
|
958 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_binary_v3_1fpr.bin": {
|
959 |
-
"f1_score": 0.0,
|
960 |
-
"precision": 0.0,
|
961 |
-
"recall": 0.0,
|
962 |
-
"specificity": 1.0,
|
963 |
-
"false_positive_rate": 0.0,
|
964 |
-
"false_negative_rate": 1.0,
|
965 |
-
"negative_predictive_value": 0.9989,
|
966 |
-
"n_test_samples": 153
|
967 |
-
}
|
968 |
-
}
|
969 |
-
},
|
970 |
-
{
|
971 |
-
"Turkey": {
|
972 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
973 |
-
"f1_score": 0.0,
|
974 |
-
"precision": 0.0,
|
975 |
-
"recall": 0.0,
|
976 |
-
"specificity": 0.9999,
|
977 |
-
"false_positive_rate": 0.0001,
|
978 |
-
"false_negative_rate": 0.0,
|
979 |
-
"negative_predictive_value": 1.0,
|
980 |
-
"n_test_samples": 0
|
981 |
-
},
|
982 |
-
"cis-lmu/glotlid/model.bin": {
|
983 |
-
"f1_score": 0.0,
|
984 |
-
"precision": 0.0,
|
985 |
-
"recall": 0.0,
|
986 |
-
"specificity": 1.0,
|
987 |
-
"false_positive_rate": 0.0,
|
988 |
-
"false_negative_rate": 0.0,
|
989 |
-
"negative_predictive_value": 1.0,
|
990 |
-
"n_test_samples": 0
|
991 |
-
}
|
992 |
-
}
|
993 |
-
},
|
994 |
-
{
|
995 |
-
"Turkmenistan": {
|
996 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
997 |
-
"f1_score": 0.0,
|
998 |
-
"precision": 0.0,
|
999 |
-
"recall": 0.0,
|
1000 |
-
"specificity": 1.0,
|
1001 |
-
"false_positive_rate": 0.0,
|
1002 |
-
"false_negative_rate": 0.0,
|
1003 |
-
"negative_predictive_value": 1.0,
|
1004 |
-
"n_test_samples": 0
|
1005 |
-
}
|
1006 |
-
}
|
1007 |
-
},
|
1008 |
-
{
|
1009 |
-
"Uzbekistan": {
|
1010 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1011 |
-
"f1_score": 0.0,
|
1012 |
-
"precision": 0.0,
|
1013 |
-
"recall": 0.0,
|
1014 |
-
"specificity": 0.9999,
|
1015 |
-
"false_positive_rate": 0.0001,
|
1016 |
-
"false_negative_rate": 0.0,
|
1017 |
-
"negative_predictive_value": 1.0,
|
1018 |
-
"n_test_samples": 0
|
1019 |
-
}
|
1020 |
-
}
|
1021 |
-
},
|
1022 |
-
{
|
1023 |
-
"Acehnese": {
|
1024 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1025 |
-
"f1_score": 0.0,
|
1026 |
-
"precision": 0.0,
|
1027 |
-
"recall": 0.0,
|
1028 |
-
"specificity": 1.0,
|
1029 |
-
"false_positive_rate": 0.0,
|
1030 |
-
"false_negative_rate": 0.0,
|
1031 |
-
"negative_predictive_value": 1.0,
|
1032 |
-
"n_test_samples": 0
|
1033 |
-
},
|
1034 |
-
"laurievb/OpenLID/model.bin": {
|
1035 |
-
"f1_score": 0.0,
|
1036 |
-
"precision": 0.0,
|
1037 |
-
"recall": 0.0,
|
1038 |
-
"specificity": 1.0,
|
1039 |
-
"false_positive_rate": 0.0,
|
1040 |
-
"false_negative_rate": 0.0,
|
1041 |
-
"negative_predictive_value": 1.0,
|
1042 |
-
"n_test_samples": 0
|
1043 |
-
}
|
1044 |
-
}
|
1045 |
-
},
|
1046 |
-
{
|
1047 |
-
"Nigeria": {
|
1048 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1049 |
-
"f1_score": 0.0,
|
1050 |
-
"precision": 0.0,
|
1051 |
-
"recall": 0.0,
|
1052 |
-
"specificity": 1.0,
|
1053 |
-
"false_positive_rate": 0.0,
|
1054 |
-
"false_negative_rate": 0.0,
|
1055 |
-
"negative_predictive_value": 1.0,
|
1056 |
-
"n_test_samples": 0
|
1057 |
-
},
|
1058 |
-
"cis-lmu/glotlid/model.bin": {
|
1059 |
-
"f1_score": 0.0,
|
1060 |
-
"precision": 0.0,
|
1061 |
-
"recall": 0.0,
|
1062 |
-
"specificity": 1.0,
|
1063 |
-
"false_positive_rate": 0.0,
|
1064 |
-
"false_negative_rate": 0.0,
|
1065 |
-
"negative_predictive_value": 1.0,
|
1066 |
-
"n_test_samples": 0
|
1067 |
-
},
|
1068 |
-
"laurievb/OpenLID/model.bin": {
|
1069 |
-
"f1_score": 0.0,
|
1070 |
-
"precision": 0.0,
|
1071 |
-
"recall": 0.0,
|
1072 |
-
"specificity": 1.0,
|
1073 |
-
"false_positive_rate": 0.0,
|
1074 |
-
"false_negative_rate": 0.0,
|
1075 |
-
"negative_predictive_value": 1.0,
|
1076 |
-
"n_test_samples": 0
|
1077 |
-
}
|
1078 |
-
}
|
1079 |
-
},
|
1080 |
-
{
|
1081 |
-
"Mesopotamia": {
|
1082 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1083 |
-
"f1_score": 0.0,
|
1084 |
-
"precision": 0.0,
|
1085 |
-
"recall": 0.0,
|
1086 |
-
"specificity": 0.9993,
|
1087 |
-
"false_positive_rate": 0.0007,
|
1088 |
-
"false_negative_rate": 0.0,
|
1089 |
-
"negative_predictive_value": 1.0,
|
1090 |
-
"n_test_samples": 0
|
1091 |
-
},
|
1092 |
-
"cis-lmu/glotlid/model.bin": {
|
1093 |
-
"f1_score": 0.0,
|
1094 |
-
"precision": 0.0,
|
1095 |
-
"recall": 0.0,
|
1096 |
-
"specificity": 0.9983,
|
1097 |
-
"false_positive_rate": 0.0017,
|
1098 |
-
"false_negative_rate": 0.0,
|
1099 |
-
"negative_predictive_value": 1.0,
|
1100 |
-
"n_test_samples": 0
|
1101 |
-
},
|
1102 |
-
"laurievb/OpenLID/model.bin": {
|
1103 |
-
"f1_score": 0.0,
|
1104 |
-
"precision": 0.0,
|
1105 |
-
"recall": 0.0,
|
1106 |
-
"specificity": 0.9989,
|
1107 |
-
"false_positive_rate": 0.0011,
|
1108 |
-
"false_negative_rate": 0.0,
|
1109 |
-
"negative_predictive_value": 1.0,
|
1110 |
-
"n_test_samples": 0
|
1111 |
-
}
|
1112 |
-
}
|
1113 |
-
},
|
1114 |
-
{
|
1115 |
-
"Afghanistan": {
|
1116 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1117 |
-
"f1_score": 0.0,
|
1118 |
-
"precision": 0.0,
|
1119 |
-
"recall": 0.0,
|
1120 |
-
"specificity": 0.9998,
|
1121 |
-
"false_positive_rate": 0.0002,
|
1122 |
-
"false_negative_rate": 0.0,
|
1123 |
-
"negative_predictive_value": 1.0,
|
1124 |
-
"n_test_samples": 0
|
1125 |
-
},
|
1126 |
-
"cis-lmu/glotlid/model.bin": {
|
1127 |
-
"f1_score": 0.0,
|
1128 |
-
"precision": 0.0,
|
1129 |
-
"recall": 0.0,
|
1130 |
-
"specificity": 0.9999,
|
1131 |
-
"false_positive_rate": 0.0001,
|
1132 |
-
"false_negative_rate": 0.0,
|
1133 |
-
"negative_predictive_value": 1.0,
|
1134 |
-
"n_test_samples": 0
|
1135 |
-
},
|
1136 |
-
"laurievb/OpenLID/model.bin": {
|
1137 |
-
"f1_score": 0.0,
|
1138 |
-
"precision": 0.0,
|
1139 |
-
"recall": 0.0,
|
1140 |
-
"specificity": 0.9995,
|
1141 |
-
"false_positive_rate": 0.0005,
|
1142 |
-
"false_negative_rate": 0.0,
|
1143 |
-
"negative_predictive_value": 1.0,
|
1144 |
-
"n_test_samples": 0
|
1145 |
-
}
|
1146 |
-
}
|
1147 |
-
},
|
1148 |
-
{
|
1149 |
-
"Kurdistan": {
|
1150 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1151 |
-
"f1_score": 0.0,
|
1152 |
-
"precision": 0.0,
|
1153 |
-
"recall": 0.0,
|
1154 |
-
"specificity": 0.9997,
|
1155 |
-
"false_positive_rate": 0.0003,
|
1156 |
-
"false_negative_rate": 0.0,
|
1157 |
-
"negative_predictive_value": 1.0,
|
1158 |
-
"n_test_samples": 0
|
1159 |
-
},
|
1160 |
-
"cis-lmu/glotlid/model.bin": {
|
1161 |
-
"f1_score": 0.0,
|
1162 |
-
"precision": 0.0,
|
1163 |
-
"recall": 0.0,
|
1164 |
-
"specificity": 1.0,
|
1165 |
-
"false_positive_rate": 0.0,
|
1166 |
-
"false_negative_rate": 0.0,
|
1167 |
-
"negative_predictive_value": 1.0,
|
1168 |
-
"n_test_samples": 0
|
1169 |
-
},
|
1170 |
-
"laurievb/OpenLID/model.bin": {
|
1171 |
-
"f1_score": 0.0,
|
1172 |
-
"precision": 0.0,
|
1173 |
-
"recall": 0.0,
|
1174 |
-
"specificity": 0.9999,
|
1175 |
-
"false_positive_rate": 0.0001,
|
1176 |
-
"false_negative_rate": 0.0,
|
1177 |
-
"negative_predictive_value": 1.0,
|
1178 |
-
"n_test_samples": 0
|
1179 |
-
}
|
1180 |
-
}
|
1181 |
-
},
|
1182 |
-
{
|
1183 |
-
"Kashmir": {
|
1184 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1185 |
-
"f1_score": 0.0,
|
1186 |
-
"precision": 0.0,
|
1187 |
-
"recall": 0.0,
|
1188 |
-
"specificity": 0.9999,
|
1189 |
-
"false_positive_rate": 0.0001,
|
1190 |
-
"false_negative_rate": 0.0,
|
1191 |
-
"negative_predictive_value": 1.0,
|
1192 |
-
"n_test_samples": 0
|
1193 |
-
},
|
1194 |
-
"laurievb/OpenLID/model.bin": {
|
1195 |
-
"f1_score": 0.0,
|
1196 |
-
"precision": 0.0,
|
1197 |
-
"recall": 0.0,
|
1198 |
-
"specificity": 0.9993,
|
1199 |
-
"false_positive_rate": 0.0007,
|
1200 |
-
"false_negative_rate": 0.0,
|
1201 |
-
"negative_predictive_value": 1.0,
|
1202 |
-
"n_test_samples": 0
|
1203 |
-
}
|
1204 |
-
}
|
1205 |
-
},
|
1206 |
-
{
|
1207 |
-
"Iran": {
|
1208 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1209 |
-
"f1_score": 0.0,
|
1210 |
-
"precision": 0.0,
|
1211 |
-
"recall": 0.0,
|
1212 |
-
"specificity": 0.9994,
|
1213 |
-
"false_positive_rate": 0.0006,
|
1214 |
-
"false_negative_rate": 0.0,
|
1215 |
-
"negative_predictive_value": 1.0,
|
1216 |
-
"n_test_samples": 0
|
1217 |
-
},
|
1218 |
-
"cis-lmu/glotlid/model.bin": {
|
1219 |
-
"f1_score": 0.0,
|
1220 |
-
"precision": 0.0,
|
1221 |
-
"recall": 0.0,
|
1222 |
-
"specificity": 0.9999,
|
1223 |
-
"false_positive_rate": 0.0001,
|
1224 |
-
"false_negative_rate": 0.0,
|
1225 |
-
"negative_predictive_value": 1.0,
|
1226 |
-
"n_test_samples": 0
|
1227 |
-
}
|
1228 |
-
}
|
1229 |
-
},
|
1230 |
-
{
|
1231 |
-
"Indonesia": {
|
1232 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1233 |
-
"f1_score": 0.0,
|
1234 |
-
"precision": 0.0,
|
1235 |
-
"recall": 0.0,
|
1236 |
-
"specificity": 1.0,
|
1237 |
-
"false_positive_rate": 0.0,
|
1238 |
-
"false_negative_rate": 0.0,
|
1239 |
-
"negative_predictive_value": 1.0,
|
1240 |
-
"n_test_samples": 0
|
1241 |
-
},
|
1242 |
-
"cis-lmu/glotlid/model.bin": {
|
1243 |
-
"f1_score": 0.0,
|
1244 |
-
"precision": 0.0,
|
1245 |
-
"recall": 0.0,
|
1246 |
-
"specificity": 1.0,
|
1247 |
-
"false_positive_rate": 0.0,
|
1248 |
-
"false_negative_rate": 0.0,
|
1249 |
-
"negative_predictive_value": 1.0,
|
1250 |
-
"n_test_samples": 0
|
1251 |
-
},
|
1252 |
-
"laurievb/OpenLID/model.bin": {
|
1253 |
-
"f1_score": 0.0,
|
1254 |
-
"precision": 0.0,
|
1255 |
-
"recall": 0.0,
|
1256 |
-
"specificity": 0.9999,
|
1257 |
-
"false_positive_rate": 0.0001,
|
1258 |
-
"false_negative_rate": 0.0,
|
1259 |
-
"negative_predictive_value": 1.0,
|
1260 |
-
"n_test_samples": 0
|
1261 |
-
}
|
1262 |
-
}
|
1263 |
-
},
|
1264 |
-
{
|
1265 |
-
"Guinea": {
|
1266 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1267 |
-
"f1_score": 0.0,
|
1268 |
-
"precision": 0.0,
|
1269 |
-
"recall": 0.0,
|
1270 |
-
"specificity": 1.0,
|
1271 |
-
"false_positive_rate": 0.0,
|
1272 |
-
"false_negative_rate": 0.0,
|
1273 |
-
"negative_predictive_value": 1.0,
|
1274 |
-
"n_test_samples": 0
|
1275 |
-
}
|
1276 |
-
}
|
1277 |
-
},
|
1278 |
-
{
|
1279 |
-
"Chad": {
|
1280 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1281 |
-
"f1_score": 0.0,
|
1282 |
-
"precision": 0.0,
|
1283 |
-
"recall": 0.0,
|
1284 |
-
"specificity": 1.0,
|
1285 |
-
"false_positive_rate": 0.0,
|
1286 |
-
"false_negative_rate": 0.0,
|
1287 |
-
"negative_predictive_value": 1.0,
|
1288 |
-
"n_test_samples": 0
|
1289 |
-
}
|
1290 |
-
}
|
1291 |
-
},
|
1292 |
-
{
|
1293 |
-
"Azerbaijan": {
|
1294 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1295 |
-
"f1_score": 0.0,
|
1296 |
-
"precision": 0.0,
|
1297 |
-
"recall": 0.0,
|
1298 |
-
"specificity": 0.9997,
|
1299 |
-
"false_positive_rate": 0.0003,
|
1300 |
-
"false_negative_rate": 0.0,
|
1301 |
-
"negative_predictive_value": 1.0,
|
1302 |
-
"n_test_samples": 0
|
1303 |
-
},
|
1304 |
-
"cis-lmu/glotlid/model.bin": {
|
1305 |
-
"f1_score": 0.0,
|
1306 |
-
"precision": 0.0,
|
1307 |
-
"recall": 0.0,
|
1308 |
-
"specificity": 0.9999,
|
1309 |
-
"false_positive_rate": 0.0001,
|
1310 |
-
"false_negative_rate": 0.0,
|
1311 |
-
"negative_predictive_value": 1.0,
|
1312 |
-
"n_test_samples": 0
|
1313 |
-
},
|
1314 |
-
"laurievb/OpenLID/model.bin": {
|
1315 |
-
"f1_score": 0.0,
|
1316 |
-
"precision": 0.0,
|
1317 |
-
"recall": 0.0,
|
1318 |
-
"specificity": 1.0,
|
1319 |
-
"false_positive_rate": 0.0,
|
1320 |
-
"false_negative_rate": 0.0,
|
1321 |
-
"negative_predictive_value": 1.0,
|
1322 |
-
"n_test_samples": 0
|
1323 |
-
}
|
1324 |
-
}
|
1325 |
-
},
|
1326 |
-
{
|
1327 |
-
"Malaysia": {
|
1328 |
-
"atlasia/Sfaya-Moroccan-Darija-vs-All/model_multi_v3_2fpr.bin": {
|
1329 |
-
"f1_score": 0.0,
|
1330 |
-
"precision": 0.0,
|
1331 |
-
"recall": 0.0,
|
1332 |
-
"specificity": 1.0,
|
1333 |
-
"false_positive_rate": 0.0,
|
1334 |
-
"false_negative_rate": 0.0,
|
1335 |
-
"negative_predictive_value": 1.0,
|
1336 |
-
"n_test_samples": 0
|
1337 |
-
}
|
1338 |
-
}
|
1339 |
-
},
|
1340 |
-
{
|
1341 |
-
"Uighur (China)": {
|
1342 |
-
"cis-lmu/glotlid/model.bin": {
|
1343 |
-
"f1_score": 0.0,
|
1344 |
-
"precision": 0.0,
|
1345 |
-
"recall": 0.0,
|
1346 |
-
"specificity": 1.0,
|
1347 |
-
"false_positive_rate": 0.0,
|
1348 |
-
"false_negative_rate": 0.0,
|
1349 |
-
"negative_predictive_value": 1.0,
|
1350 |
-
"n_test_samples": 0
|
1351 |
-
},
|
1352 |
-
"laurievb/OpenLID/model.bin": {
|
1353 |
-
"f1_score": 0.0,
|
1354 |
-
"precision": 0.0,
|
1355 |
-
"recall": 0.0,
|
1356 |
-
"specificity": 1.0,
|
1357 |
-
"false_positive_rate": 0.0,
|
1358 |
-
"false_negative_rate": 0.0,
|
1359 |
-
"negative_predictive_value": 1.0,
|
1360 |
-
"n_test_samples": 0
|
1361 |
-
}
|
1362 |
-
}
|
1363 |
-
},
|
1364 |
-
{
|
1365 |
-
"Balochistan": {
|
1366 |
-
"cis-lmu/glotlid/model.bin": {
|
1367 |
-
"f1_score": 0.0,
|
1368 |
-
"precision": 0.0,
|
1369 |
-
"recall": 0.0,
|
1370 |
-
"specificity": 1.0,
|
1371 |
-
"false_positive_rate": 0.0,
|
1372 |
-
"false_negative_rate": 0.0,
|
1373 |
-
"negative_predictive_value": 1.0,
|
1374 |
-
"n_test_samples": 0
|
1375 |
-
}
|
1376 |
-
}
|
1377 |
-
}
|
1378 |
]
|
|
|
1 |
[
|
2 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
]
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
fasttext
|
2 |
-
transformers
|
3 |
-
datasets
|
4 |
-
pandas
|
5 |
-
scikit-learn
|
|
|
|
1 |
+
fasttext==0.9.3
|
2 |
+
transformers==4.39.2
|
3 |
+
datasets==2.18.0
|
4 |
+
pandas==2.2.3
|
5 |
+
scikit-learn==1.4.2
|
6 |
+
numpy==1.26.4
|
utils.py
CHANGED
@@ -1,24 +1,38 @@
|
|
1 |
import base64
|
2 |
-
from fasttext import load_model
|
3 |
from huggingface_hub import hf_hub_download
|
|
|
4 |
import os
|
5 |
import json
|
6 |
import pandas as pd
|
7 |
-
from sklearn.metrics import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import numpy as np
|
9 |
from datasets import load_dataset
|
10 |
-
import fasttext
|
11 |
|
12 |
# Constants
|
13 |
MODEL_REPO = "atlasia/Sfaya-Moroccan-Darija-vs-All"
|
14 |
BIN_FILENAME = "model_multi_v3_2fpr.bin"
|
15 |
BINARY_LEADERBOARD_FILE = "darija_leaderboard_binary.json"
|
16 |
MULTILINGUAL_LEADERBOARD_FILE = "darija_leaderboard_multilingual.json"
|
17 |
-
DATA_PATH = "atlasia/
|
18 |
|
19 |
target_label = "Morocco"
|
20 |
is_binary = False
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
metrics = [
|
23 |
'f1_score',
|
24 |
'precision',
|
@@ -38,6 +52,16 @@ default_metrics = [
|
|
38 |
'false_negative_rate'
|
39 |
]
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
language_mapping_dict = {
|
42 |
'ace_Arab': 'Acehnese',
|
43 |
'acm_Arab': 'Mesopotamia', # 'Gilit Mesopotamian'
|
@@ -228,53 +252,87 @@ def run_eval_one_vs_all(model, data_test, TARGET_LANG='Morocco', language_mappin
|
|
228 |
out = out.reset_index()
|
229 |
out = out[out['preds']==TARGET_LANG].drop(columns=['preds', 'size'])
|
230 |
|
|
|
|
|
231 |
return out
|
232 |
|
233 |
-
def
|
234 |
try:
|
235 |
with open(BINARY_LEADERBOARD_FILE, "r") as f:
|
236 |
data = json.load(f)
|
237 |
except FileNotFoundError:
|
238 |
data = []
|
239 |
-
|
240 |
# Process the results for each dialect/country
|
241 |
for _, row in result_df.iterrows():
|
242 |
-
|
243 |
-
#
|
244 |
-
if
|
245 |
continue
|
246 |
-
|
247 |
-
# Find existing country entry or create new one
|
248 |
-
country_entry = next((item for item in data if country in item), None)
|
249 |
-
if country_entry is None:
|
250 |
-
country_entry = {country: {}}
|
251 |
-
data.append(country_entry)
|
252 |
|
253 |
-
#
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
if
|
259 |
-
|
|
|
260 |
|
261 |
# Save updated leaderboard data
|
262 |
-
with open(
|
263 |
json.dump(data, f, indent=4)
|
264 |
|
265 |
def handle_evaluation(model_path, model_path_bin, use_mapping=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
# run the evaluation
|
267 |
-
result_df, _ = run_eval(
|
268 |
# set the model name
|
269 |
model_name = model_path + '/' + model_path_bin
|
270 |
-
|
|
|
271 |
update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE)
|
272 |
-
# update the leaderboard table
|
273 |
-
df = load_leaderboard_multilingual()
|
274 |
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
def run_eval(
|
278 |
"""Run evaluation on a dataset and compute metrics.
|
279 |
|
280 |
Args:
|
@@ -288,21 +346,6 @@ def run_eval(model_path, model_path_bin, language_mapping_dict=None, use_mapping
|
|
288 |
pd.DataFrame: A DataFrame containing evaluation metrics.
|
289 |
"""
|
290 |
|
291 |
-
# download model and get the model path
|
292 |
-
model_path = hf_hub_download(repo_id=model_path, filename=model_path_bin, cache_dir=None)
|
293 |
-
|
294 |
-
# Load the trained model
|
295 |
-
print(f"[INFO] Loading model from Path: {model_path}, using version {model_path_bin}...")
|
296 |
-
model = fasttext.load_model(model_path)
|
297 |
-
|
298 |
-
# Load the evaluation dataset
|
299 |
-
print(f"[INFO] Loading evaluation dataset from Path: atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced...")
|
300 |
-
eval_dataset = load_dataset("atlasia/No-Arabic-Dialect-Left-Behind-Filtered-Balanced", split='test')
|
301 |
-
|
302 |
-
# Transform to pandas DataFrame
|
303 |
-
print(f"[INFO] Converting evaluation dataset to Pandas DataFrame...")
|
304 |
-
df_eval = pd.DataFrame(eval_dataset)
|
305 |
-
|
306 |
# Predict labels using the model
|
307 |
print(f"[INFO] Running predictions...")
|
308 |
df_eval['preds'] = df_eval['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
|
@@ -318,7 +361,7 @@ def run_eval(model_path, model_path_bin, language_mapping_dict=None, use_mapping
|
|
318 |
|
319 |
return result_df, df_eval
|
320 |
|
321 |
-
def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/submissions/"):
|
322 |
try:
|
323 |
if file is None:
|
324 |
return "Please upload a file."
|
@@ -352,13 +395,14 @@ def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/su
|
|
352 |
# Update the leaderboards
|
353 |
update_darija_multilingual_leaderboard(result_df, uploaded_model_name, MULTILINGUAL_LEADERBOARD_FILE)
|
354 |
|
355 |
-
#
|
356 |
-
#
|
|
|
357 |
|
358 |
# update the leaderboard table
|
359 |
df = load_leaderboard_multilingual()
|
360 |
|
361 |
-
return create_leaderboard_display_multilingual(df,
|
362 |
|
363 |
def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
|
364 |
|
@@ -407,6 +451,42 @@ def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_L
|
|
407 |
json.dump(data, f, indent=4)
|
408 |
|
409 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
|
411 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
412 |
MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
|
@@ -433,10 +513,36 @@ def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderbo
|
|
433 |
df = pd.DataFrame(rows)
|
434 |
return df
|
435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
def create_leaderboard_display_multilingual(df, selected_country, selected_metrics):
|
437 |
# Filter by country if specified
|
438 |
if selected_country and selected_country.upper() != 'ALL':
|
439 |
-
print(f"Filtering leaderboard by country: {selected_country}")
|
440 |
df = df[df['country'] == selected_country]
|
441 |
df = df.drop(columns=['country'])
|
442 |
|
@@ -466,6 +572,15 @@ def update_leaderboard_multilingual(country, selected_metrics):
|
|
466 |
display_df = create_leaderboard_display_multilingual(df, country, selected_metrics)
|
467 |
return display_df
|
468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
469 |
def encode_image_to_base64(image_path):
|
470 |
with open(image_path, "rb") as image_file:
|
471 |
encoded_string = base64.b64encode(image_file.read()).decode()
|
@@ -485,4 +600,37 @@ def create_html_image(image_path):
|
|
485 |
</div>
|
486 |
</div>
|
487 |
"""
|
488 |
-
return html_string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import base64
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
+
import fasttext
|
4 |
import os
|
5 |
import json
|
6 |
import pandas as pd
|
7 |
+
from sklearn.metrics import (
|
8 |
+
precision_score,
|
9 |
+
recall_score,
|
10 |
+
f1_score,
|
11 |
+
confusion_matrix,
|
12 |
+
balanced_accuracy_score,
|
13 |
+
matthews_corrcoef
|
14 |
+
)
|
15 |
import numpy as np
|
16 |
from datasets import load_dataset
|
|
|
17 |
|
18 |
# Constants
|
19 |
MODEL_REPO = "atlasia/Sfaya-Moroccan-Darija-vs-All"
|
20 |
BIN_FILENAME = "model_multi_v3_2fpr.bin"
|
21 |
BINARY_LEADERBOARD_FILE = "darija_leaderboard_binary.json"
|
22 |
MULTILINGUAL_LEADERBOARD_FILE = "darija_leaderboard_multilingual.json"
|
23 |
+
DATA_PATH = "atlasia/Arabic-LID-Leaderboard"
|
24 |
|
25 |
target_label = "Morocco"
|
26 |
is_binary = False
|
27 |
|
28 |
+
# Load test dataset
|
29 |
+
test_dataset = load_dataset(DATA_PATH, split='test')
|
30 |
+
|
31 |
+
# Supported dialects
|
32 |
+
all_target_languages = list(test_dataset.unique("dialect"))
|
33 |
+
supported_dialects = all_target_languages + ['All']
|
34 |
+
languages_to_display_one_vs_all = all_target_languages # everything except All
|
35 |
+
|
36 |
metrics = [
|
37 |
'f1_score',
|
38 |
'precision',
|
|
|
52 |
'false_negative_rate'
|
53 |
]
|
54 |
|
55 |
+
# default language to display in one-vs-all leaderboard
|
56 |
+
default_languages = [
|
57 |
+
'Morocco',
|
58 |
+
'MSA',
|
59 |
+
'Egypt',
|
60 |
+
'Algeria',
|
61 |
+
'Tunisia',
|
62 |
+
'Levantine',
|
63 |
+
]
|
64 |
+
|
65 |
language_mapping_dict = {
|
66 |
'ace_Arab': 'Acehnese',
|
67 |
'acm_Arab': 'Mesopotamia', # 'Gilit Mesopotamian'
|
|
|
252 |
out = out.reset_index()
|
253 |
out = out[out['preds']==TARGET_LANG].drop(columns=['preds', 'size'])
|
254 |
|
255 |
+
print(f'out for TARGET_LANG={TARGET_LANG} \n: {out}')
|
256 |
+
|
257 |
return out
|
258 |
|
259 |
+
def update_darija_one_vs_all_leaderboard(result_df, model_name, target_lang, BINARY_LEADERBOARD_FILE="darija_leaderboard_binary.json"):
|
260 |
try:
|
261 |
with open(BINARY_LEADERBOARD_FILE, "r") as f:
|
262 |
data = json.load(f)
|
263 |
except FileNotFoundError:
|
264 |
data = []
|
265 |
+
|
266 |
# Process the results for each dialect/country
|
267 |
for _, row in result_df.iterrows():
|
268 |
+
dialect = row['dialect']
|
269 |
+
# Skip 'Other' class, it is considered as the null space
|
270 |
+
if dialect == 'Other':
|
271 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
# Find existing target_lang entry or create a new one
|
274 |
+
target_entry = next((item for item in data if target_lang in item), None)
|
275 |
+
if target_entry is None:
|
276 |
+
target_entry = {target_lang: {}}
|
277 |
+
data.append(target_entry)
|
278 |
+
|
279 |
+
# Get the country-specific data for this target language
|
280 |
+
country_data = target_entry[target_lang]
|
281 |
+
|
282 |
+
# Initialize the dialect/country entry if it doesn't exist
|
283 |
+
if dialect not in country_data:
|
284 |
+
country_data[dialect] = {}
|
285 |
+
|
286 |
+
# Update the model metrics under the model name for the given dialect
|
287 |
+
country_data[dialect][model_name] = float(row['false_positive_rate'])
|
288 |
|
289 |
+
# # Add the number of test samples, if not already present
|
290 |
+
# if "n_test_samples" not in country_data[dialect]:
|
291 |
+
# country_data[dialect]["n_test_samples"] = int(row['size'])
|
292 |
|
293 |
# Save updated leaderboard data
|
294 |
+
with open(BINARY_LEADERBOARD_FILE, "w") as f:
|
295 |
json.dump(data, f, indent=4)
|
296 |
|
297 |
def handle_evaluation(model_path, model_path_bin, use_mapping=False):
|
298 |
+
|
299 |
+
# download model and get the model path
|
300 |
+
model_path = hf_hub_download(repo_id=model_path, filename=model_path_bin, cache_dir=None)
|
301 |
+
|
302 |
+
# Load the trained model
|
303 |
+
print(f"[INFO] Loading model from Path: {model_path}, using version {model_path_bin}...")
|
304 |
+
model = fasttext.load_model(model_path)
|
305 |
+
|
306 |
+
# Load the evaluation dataset
|
307 |
+
print(f"[INFO] Loading evaluation dataset from Path: {DATA_PATH}...")
|
308 |
+
eval_dataset = load_dataset(DATA_PATH, split='test')
|
309 |
+
|
310 |
+
# Transform to pandas DataFrame
|
311 |
+
print(f"[INFO] Converting evaluation dataset to Pandas DataFrame...")
|
312 |
+
df_eval = pd.DataFrame(eval_dataset)
|
313 |
+
|
314 |
# run the evaluation
|
315 |
+
result_df, _ = run_eval(model, df_eval, language_mapping_dict, use_mapping=use_mapping)
|
316 |
# set the model name
|
317 |
model_name = model_path + '/' + model_path_bin
|
318 |
+
|
319 |
+
# update the multilingual leaderboard
|
320 |
update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE)
|
|
|
|
|
321 |
|
322 |
+
# # TODO
|
323 |
+
for target_lang in all_target_languages:
|
324 |
+
result_df_one_vs_all =run_eval_one_vs_all(model, df_eval, TARGET_LANG=target_lang, language_mapping_dict=language_mapping_dict, use_mapping=use_mapping)
|
325 |
+
update_darija_one_vs_all_leaderboard(result_df_one_vs_all, model_name, target_lang, BINARY_LEADERBOARD_FILE)
|
326 |
+
|
327 |
+
# load the updated leaderboard tables
|
328 |
+
df_multilingual = load_leaderboard_multilingual()
|
329 |
+
df_one_vs_all = load_leaderboard_one_vs_all()
|
330 |
+
|
331 |
+
status_message = "**Evaluation now ended! 🤗**"
|
332 |
+
|
333 |
+
return create_leaderboard_display_multilingual(df_multilingual, target_label, default_metrics), status_message
|
334 |
|
335 |
+
def run_eval(model, df_eval, language_mapping_dict=None, use_mapping=False):
|
336 |
"""Run evaluation on a dataset and compute metrics.
|
337 |
|
338 |
Args:
|
|
|
346 |
pd.DataFrame: A DataFrame containing evaluation metrics.
|
347 |
"""
|
348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
# Predict labels using the model
|
350 |
print(f"[INFO] Running predictions...")
|
351 |
df_eval['preds'] = df_eval['text'].apply(lambda text: predict_label(text, model, language_mapping_dict, use_mapping=use_mapping))
|
|
|
361 |
|
362 |
return result_df, df_eval
|
363 |
|
364 |
+
def process_results_file(file, uploaded_model_name, base_path_save="./atlasia/submissions/", default_language='Morocco'):
|
365 |
try:
|
366 |
if file is None:
|
367 |
return "Please upload a file."
|
|
|
395 |
# Update the leaderboards
|
396 |
update_darija_multilingual_leaderboard(result_df, uploaded_model_name, MULTILINGUAL_LEADERBOARD_FILE)
|
397 |
|
398 |
+
# TODO: implement this ove_vs_all differently for people only submitting csv file. They need to submit two files, one for multi-lang and the other for one-vs-all
|
399 |
+
# result_df_one_vs_all = run_eval_one_vs_all(...)
|
400 |
+
# update_darija_one_vs_all_leaderboard(...)
|
401 |
|
402 |
# update the leaderboard table
|
403 |
df = load_leaderboard_multilingual()
|
404 |
|
405 |
+
return create_leaderboard_display_multilingual(df, default_language, default_metrics)
|
406 |
|
407 |
def update_darija_multilingual_leaderboard(result_df, model_name, MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
|
408 |
|
|
|
451 |
json.dump(data, f, indent=4)
|
452 |
|
453 |
|
454 |
+
def load_leaderboard_one_vs_all(BINARY_LEADERBOARD_FILE="darija_leaderboard_binary.json"):
|
455 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
456 |
+
BINARY_LEADERBOARD_FILE = os.path.join(current_dir, BINARY_LEADERBOARD_FILE)
|
457 |
+
|
458 |
+
with open(BINARY_LEADERBOARD_FILE, "r") as f:
|
459 |
+
data = json.load(f)
|
460 |
+
|
461 |
+
# Initialize lists to store the flattened data
|
462 |
+
rows = []
|
463 |
+
|
464 |
+
# Process each target language's data
|
465 |
+
for leaderboard_data in data:
|
466 |
+
for target_language, results in leaderboard_data.items():
|
467 |
+
for language, models in results.items():
|
468 |
+
|
469 |
+
for model_name, false_positive_rate in models.items():
|
470 |
+
|
471 |
+
row = {
|
472 |
+
'target_language': target_language,
|
473 |
+
'language': language,
|
474 |
+
'model': model_name,
|
475 |
+
'false_positive_rate': false_positive_rate,
|
476 |
+
}
|
477 |
+
# Add all metrics to the row
|
478 |
+
rows.append(row)
|
479 |
+
|
480 |
+
# Convert to DataFrame
|
481 |
+
df = pd.DataFrame(rows)
|
482 |
+
|
483 |
+
# Pivot the DataFrame to create the desired structure: all languages in columns and models in rows, and each (model, target_language, language) = false_positive_rate
|
484 |
+
df_pivot = df.pivot(index=['model', 'target_language'], columns='language', values='false_positive_rate').reset_index()
|
485 |
+
|
486 |
+
# print(f'df_pivot \n: {df_pivot}')
|
487 |
+
|
488 |
+
return df_pivot
|
489 |
+
|
490 |
def load_leaderboard_multilingual(MULTILINGUAL_LEADERBOARD_FILE="darija_leaderboard_multilingual.json"):
|
491 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
492 |
MULTILINGUAL_LEADERBOARD_FILE = os.path.join(current_dir, MULTILINGUAL_LEADERBOARD_FILE)
|
|
|
513 |
df = pd.DataFrame(rows)
|
514 |
return df
|
515 |
|
516 |
+
def create_leaderboard_display_one_vs_all(df, target_language, selected_languages):
|
517 |
+
|
518 |
+
# Filter by target_language if specified
|
519 |
+
if target_language:
|
520 |
+
df = df[df['target_language'] == target_language]
|
521 |
+
|
522 |
+
# Remove the target_language from selected_languages
|
523 |
+
if target_language in selected_languages:
|
524 |
+
selected_languages = [lang for lang in selected_languages if lang != target_language]
|
525 |
+
|
526 |
+
# Select only the chosen languages (plus 'model' column)
|
527 |
+
columns_to_show = ['model'] + [language for language in selected_languages if language in df.columns]
|
528 |
+
|
529 |
+
# Sort by first selected metric by default
|
530 |
+
if selected_languages:
|
531 |
+
df = df.sort_values(by=selected_languages[0], ascending=False)
|
532 |
+
|
533 |
+
df = df[columns_to_show]
|
534 |
+
|
535 |
+
# Format numeric columns to 4 decimal places
|
536 |
+
numeric_cols = df.select_dtypes(include=['float64']).columns
|
537 |
+
df[numeric_cols] = df[numeric_cols].round(4)
|
538 |
+
|
539 |
+
return df, selected_languages
|
540 |
+
|
541 |
+
|
542 |
def create_leaderboard_display_multilingual(df, selected_country, selected_metrics):
|
543 |
# Filter by country if specified
|
544 |
if selected_country and selected_country.upper() != 'ALL':
|
545 |
+
# print(f"Filtering leaderboard by country: {selected_country}")
|
546 |
df = df[df['country'] == selected_country]
|
547 |
df = df.drop(columns=['country'])
|
548 |
|
|
|
572 |
display_df = create_leaderboard_display_multilingual(df, country, selected_metrics)
|
573 |
return display_df
|
574 |
|
575 |
+
def update_leaderboard_one_vs_all(target_language, selected_languages):
|
576 |
+
if not selected_languages: # If no language selected, show all defaults
|
577 |
+
selected_languages = default_languages
|
578 |
+
df = load_leaderboard_one_vs_all()
|
579 |
+
display_df, selected_languages = create_leaderboard_display_one_vs_all(df, target_language, selected_languages)
|
580 |
+
# to improve visibility in case the user chooses multiple language leading to many columns, the `model` column must remain fixed
|
581 |
+
# display_df = render_fixed_columns(display_df)
|
582 |
+
return display_df, selected_languages
|
583 |
+
|
584 |
def encode_image_to_base64(image_path):
|
585 |
with open(image_path, "rb") as image_file:
|
586 |
encoded_string = base64.b64encode(image_file.read()).decode()
|
|
|
600 |
</div>
|
601 |
</div>
|
602 |
"""
|
603 |
+
return html_string
|
604 |
+
|
605 |
+
# Function to render HTML table with fixed 'model' column
|
606 |
+
def render_fixed_columns(df):
|
607 |
+
style = """
|
608 |
+
<style>
|
609 |
+
.table-container {
|
610 |
+
overflow-x: auto;
|
611 |
+
position: relative;
|
612 |
+
white-space: nowrap;
|
613 |
+
}
|
614 |
+
table {
|
615 |
+
border-collapse: collapse;
|
616 |
+
width: 100%;
|
617 |
+
}
|
618 |
+
th, td {
|
619 |
+
border: 1px solid black;
|
620 |
+
padding: 8px;
|
621 |
+
text-align: left;
|
622 |
+
}
|
623 |
+
th.fixed, td.fixed {
|
624 |
+
position: sticky;
|
625 |
+
left: 0;
|
626 |
+
background-color: white;
|
627 |
+
z-index: 2;
|
628 |
+
}
|
629 |
+
</style>
|
630 |
+
"""
|
631 |
+
table_html = df.to_html(index=False).replace(
|
632 |
+
"<th>model</th>", '<th class="fixed">model</th>'
|
633 |
+
).replace(
|
634 |
+
'<td>', '<td class="fixed">', 1
|
635 |
+
)
|
636 |
+
return f"{style}<div class='table-container'>{table_html}</div>"
|