Merge pull request #3 from shrits-ai/main
Browse files- data_utils.py +2 -2
- lr_finder.py +48 -0
- main.py +22 -5
- tmppl87qjev/_remote_module_non_scriptable.py +0 -81
- train_test.py +6 -1
- utils.py +60 -2
data_utils.py
CHANGED
@@ -8,7 +8,7 @@ def get_train_transform():
|
|
8 |
return A.Compose([
|
9 |
A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
|
10 |
A.HorizontalFlip(p=0.5),
|
11 |
-
A.ColorJitter(brightness=0.
|
12 |
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
13 |
ToTensorV2()
|
14 |
])
|
@@ -28,4 +28,4 @@ def get_data_loaders(train_transform, test_transform, batch_size_train=128, batc
|
|
28 |
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
|
29 |
testloader = DataLoader(testset, batch_size=batch_size_test, shuffle=False, num_workers=8, pin_memory=True)
|
30 |
|
31 |
-
return trainloader, testloader
|
|
|
8 |
return A.Compose([
|
9 |
A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
|
10 |
A.HorizontalFlip(p=0.5),
|
11 |
+
A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.05, p=0.5),
|
12 |
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
|
13 |
ToTensorV2()
|
14 |
])
|
|
|
28 |
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
|
29 |
testloader = DataLoader(testset, batch_size=batch_size_test, shuffle=False, num_workers=8, pin_memory=True)
|
30 |
|
31 |
+
return trainloader, testloader
|
lr_finder.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.optim as optim
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
5 |
+
from torchvision import models, datasets, transforms
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
|
8 |
+
# Load pretrained ResNet-50
|
9 |
+
model = models.resnet50(pretrained=True)
|
10 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust for your dataset
|
11 |
+
model = model.to('cuda')
|
12 |
+
|
13 |
+
# Define optimizer and loss function
|
14 |
+
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=1e-4)
|
15 |
+
criterion = nn.CrossEntropyLoss()
|
16 |
+
|
17 |
+
# Prepare dataset and DataLoader
|
18 |
+
transform = transforms.Compose([
|
19 |
+
transforms.Resize(256),
|
20 |
+
transforms.CenterCrop(224),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
23 |
+
])
|
24 |
+
train_dataset = datasets.ImageFolder(root='/path/to/train', transform=transform)
|
25 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
|
26 |
+
|
27 |
+
# Set One-Cycle LR scheduler
|
28 |
+
epochs = 10
|
29 |
+
steps_per_epoch = len(train_loader)
|
30 |
+
lr_max = 1e-3 # Adjust based on LR Finder or task size
|
31 |
+
|
32 |
+
scheduler = OneCycleLR(optimizer, max_lr=lr_max, epochs=epochs, steps_per_epoch=steps_per_epoch)
|
33 |
+
|
34 |
+
# Training loop
|
35 |
+
for epoch in range(epochs):
|
36 |
+
model.train()
|
37 |
+
for inputs, labels in train_loader:
|
38 |
+
inputs, labels = inputs.to('cuda'), labels.to('cuda')
|
39 |
+
|
40 |
+
optimizer.zero_grad()
|
41 |
+
outputs = model(inputs)
|
42 |
+
loss = criterion(outputs, labels)
|
43 |
+
loss.backward()
|
44 |
+
optimizer.step()
|
45 |
+
scheduler.step() # Update learning rate using One-Cycle policy
|
46 |
+
|
47 |
+
print(f"Epoch {epoch+1}/{epochs} completed.")
|
48 |
+
|
main.py
CHANGED
@@ -5,13 +5,19 @@ from resnet_model import ResNet50
|
|
5 |
from data_utils import get_train_transform, get_test_transform, get_data_loaders
|
6 |
from train_test import train, test
|
7 |
from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
|
|
|
|
|
8 |
|
9 |
def main():
|
10 |
# Initialize model, loss function, and optimizer
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
model = ResNet50()
|
|
|
|
|
|
|
13 |
criterion = nn.CrossEntropyLoss()
|
14 |
-
optimizer = optim.SGD(model.parameters(), lr=
|
|
|
15 |
|
16 |
# Load data
|
17 |
train_transform = get_train_transform()
|
@@ -30,8 +36,16 @@ def main():
|
|
30 |
results = []
|
31 |
learning_rates = []
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Training loop
|
34 |
-
for epoch in range(start_epoch,
|
35 |
train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
|
36 |
test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
|
37 |
print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Test Top-1 Acc: {test_accuracy1:.2f}')
|
@@ -39,7 +53,8 @@ def main():
|
|
39 |
# Append results for this epoch
|
40 |
results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
|
41 |
learning_rates.append(optimizer.param_groups[0]['lr'])
|
42 |
-
|
|
|
43 |
# Save checkpoint
|
44 |
save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
|
45 |
|
@@ -56,7 +71,9 @@ def main():
|
|
56 |
plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates)
|
57 |
|
58 |
# Plot misclassified samples
|
|
|
59 |
plot_misclassified_samples(misclassified_images, misclassified_labels, misclassified_preds, classes=['class1', 'class2', ...]) # Replace with actual class names
|
|
|
60 |
|
61 |
if __name__ == '__main__':
|
62 |
-
main()
|
|
|
5 |
from data_utils import get_train_transform, get_test_transform, get_data_loaders
|
6 |
from train_test import train, test
|
7 |
from utils import save_checkpoint, load_checkpoint, plot_training_curves, plot_misclassified_samples
|
8 |
+
from torchsummary import summary
|
9 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
10 |
|
11 |
def main():
|
12 |
# Initialize model, loss function, and optimizer
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model = ResNet50()
|
15 |
+
model = torch.nn.DataParallel(model)
|
16 |
+
model = model.to(device)
|
17 |
+
summary(model, input_size=(3, 224, 224))
|
18 |
criterion = nn.CrossEntropyLoss()
|
19 |
+
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9, weight_decay=1e-4)
|
20 |
+
|
21 |
|
22 |
# Load data
|
23 |
train_transform = get_train_transform()
|
|
|
36 |
results = []
|
37 |
learning_rates = []
|
38 |
|
39 |
+
# Set One-Cycle LR scheduler
|
40 |
+
num_epochs = 10
|
41 |
+
steps_per_epoch = len(trainloader)
|
42 |
+
lr_max = 1e-2
|
43 |
+
|
44 |
+
scheduler = OneCycleLR(optimizer, max_lr=lr_max, epochs=num_epochs, steps_per_epoch=steps_per_epoch)
|
45 |
+
|
46 |
+
|
47 |
# Training loop
|
48 |
+
for epoch in range(start_epoch+1, start_epoch + num_epochs):
|
49 |
train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
|
50 |
test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
|
51 |
print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Test Top-1 Acc: {test_accuracy1:.2f}')
|
|
|
53 |
# Append results for this epoch
|
54 |
results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
|
55 |
learning_rates.append(optimizer.param_groups[0]['lr'])
|
56 |
+
|
57 |
+
scheduler.step()
|
58 |
# Save checkpoint
|
59 |
save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
|
60 |
|
|
|
71 |
plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates)
|
72 |
|
73 |
# Plot misclassified samples
|
74 |
+
'''
|
75 |
plot_misclassified_samples(misclassified_images, misclassified_labels, misclassified_preds, classes=['class1', 'class2', ...]) # Replace with actual class names
|
76 |
+
'''
|
77 |
|
78 |
if __name__ == '__main__':
|
79 |
+
main()
|
tmppl87qjev/_remote_module_non_scriptable.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
from typing import *
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.distributed.rpc as rpc
|
5 |
-
from torch import Tensor
|
6 |
-
from torch._jit_internal import Future
|
7 |
-
from torch.distributed.rpc import RRef
|
8 |
-
from typing import Tuple # pyre-ignore: unused import
|
9 |
-
|
10 |
-
|
11 |
-
module_interface_cls = None
|
12 |
-
|
13 |
-
|
14 |
-
def forward_async(self, *args, **kwargs):
|
15 |
-
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
16 |
-
kwargs = {**kwargs}
|
17 |
-
return rpc.rpc_async(
|
18 |
-
self.module_rref.owner(),
|
19 |
-
_remote_forward,
|
20 |
-
args,
|
21 |
-
kwargs,
|
22 |
-
)
|
23 |
-
|
24 |
-
|
25 |
-
def forward(self, *args, **kwargs):
|
26 |
-
args = (self.module_rref, self.device, self.is_device_map_set, *args)
|
27 |
-
kwargs = {**kwargs}
|
28 |
-
ret_fut = rpc.rpc_async(
|
29 |
-
self.module_rref.owner(),
|
30 |
-
_remote_forward,
|
31 |
-
args,
|
32 |
-
kwargs,
|
33 |
-
)
|
34 |
-
return ret_fut.wait()
|
35 |
-
|
36 |
-
|
37 |
-
_generated_methods = [
|
38 |
-
forward_async,
|
39 |
-
forward,
|
40 |
-
]
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
def _remote_forward(
|
46 |
-
module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, *args, **kwargs):
|
47 |
-
module = module_rref.local_value()
|
48 |
-
device = torch.device(device)
|
49 |
-
|
50 |
-
if device.type != "cuda":
|
51 |
-
return module.forward(*args, **kwargs)
|
52 |
-
|
53 |
-
# If the module is on a cuda device,
|
54 |
-
# move any CPU tensor in args or kwargs to the same cuda device.
|
55 |
-
# Since torch script does not support generator expression,
|
56 |
-
# have to use concatenation instead of
|
57 |
-
# ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
|
58 |
-
args = (*args,)
|
59 |
-
out_args: Tuple[()] = ()
|
60 |
-
for arg in args:
|
61 |
-
arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
|
62 |
-
out_args = out_args + arg
|
63 |
-
|
64 |
-
kwargs = {**kwargs}
|
65 |
-
for k, v in kwargs.items():
|
66 |
-
if isinstance(v, Tensor):
|
67 |
-
kwargs[k] = kwargs[k].to(device)
|
68 |
-
|
69 |
-
if is_device_map_set:
|
70 |
-
return module.forward(*out_args, **kwargs)
|
71 |
-
|
72 |
-
# If the device map is empty, then only CPU tensors are allowed to send over wire,
|
73 |
-
# so have to move any GPU tensor to CPU in the output.
|
74 |
-
# Since torch script does not support generator expression,
|
75 |
-
# have to use concatenation instead of
|
76 |
-
# ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, **kwargs))``.
|
77 |
-
ret: Tuple[()] = ()
|
78 |
-
for i in module.forward(*out_args, **kwargs):
|
79 |
-
i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
|
80 |
-
ret = ret + i
|
81 |
-
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_test.py
CHANGED
@@ -31,6 +31,9 @@ def train(model, device, train_loader, optimizer, criterion, epoch, accumulation
|
|
31 |
|
32 |
pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
|
33 |
|
|
|
|
|
|
|
34 |
return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
|
35 |
|
36 |
def test(model, device, test_loader, criterion):
|
@@ -56,13 +59,15 @@ def test(model, device, test_loader, criterion):
|
|
56 |
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
|
57 |
|
58 |
# Collect misclassified samples
|
|
|
59 |
for i in range(inputs.size(0)):
|
60 |
if targets[i] not in predicted[i, :1]:
|
61 |
misclassified_images.append(inputs[i].cpu())
|
62 |
misclassified_labels.append(targets[i].cpu())
|
63 |
misclassified_preds.append(predicted[i, :1].cpu())
|
|
|
64 |
|
65 |
test_accuracy1 = 100. * correct1 / total
|
66 |
test_accuracy5 = 100. * correct5 / total
|
67 |
print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
|
68 |
-
return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
|
|
|
31 |
|
32 |
pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
|
33 |
|
34 |
+
if (batch_idx + 1) % 50 == 0:
|
35 |
+
torch.cuda.empty_cache()
|
36 |
+
|
37 |
return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
|
38 |
|
39 |
def test(model, device, test_loader, criterion):
|
|
|
59 |
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
|
60 |
|
61 |
# Collect misclassified samples
|
62 |
+
'''
|
63 |
for i in range(inputs.size(0)):
|
64 |
if targets[i] not in predicted[i, :1]:
|
65 |
misclassified_images.append(inputs[i].cpu())
|
66 |
misclassified_labels.append(targets[i].cpu())
|
67 |
misclassified_preds.append(predicted[i, :1].cpu())
|
68 |
+
'''
|
69 |
|
70 |
test_accuracy1 = 100. * correct1 / total
|
71 |
test_accuracy5 = 100. * correct5 / total
|
72 |
print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
|
73 |
+
return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
|
utils.py
CHANGED
@@ -9,13 +9,15 @@ def save_checkpoint(model, optimizer, epoch, loss, path):
|
|
9 |
'optimizer_state_dict': optimizer.state_dict(),
|
10 |
'loss': loss,
|
11 |
}, path)
|
|
|
12 |
|
13 |
def load_checkpoint(model, optimizer, path):
|
14 |
-
checkpoint = torch.load(path)
|
15 |
model.load_state_dict(checkpoint['model_state_dict'])
|
16 |
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
17 |
epoch = checkpoint['epoch']
|
18 |
loss = checkpoint['loss']
|
|
|
19 |
return model, optimizer, epoch, loss
|
20 |
|
21 |
def plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates):
|
@@ -62,4 +64,60 @@ def plot_misclassified_samples(misclassified_images, misclassified_labels, miscl
|
|
62 |
plt.imshow(misclassified_grid.permute(1, 2, 0))
|
63 |
plt.title("Misclassified Samples")
|
64 |
plt.axis('off')
|
65 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
'optimizer_state_dict': optimizer.state_dict(),
|
10 |
'loss': loss,
|
11 |
}, path)
|
12 |
+
print(f"Checkpoint saved at epoch {epoch}")
|
13 |
|
14 |
def load_checkpoint(model, optimizer, path):
|
15 |
+
checkpoint = torch.load(path, weights_only=True)
|
16 |
model.load_state_dict(checkpoint['model_state_dict'])
|
17 |
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
18 |
epoch = checkpoint['epoch']
|
19 |
loss = checkpoint['loss']
|
20 |
+
print(f"Checkpoint loaded, resuming from epoch {epoch}")
|
21 |
return model, optimizer, epoch, loss
|
22 |
|
23 |
def plot_training_curves(epochs, train_acc1, test_acc1, train_acc5, test_acc5, train_losses, test_losses, learning_rates):
|
|
|
64 |
plt.imshow(misclassified_grid.permute(1, 2, 0))
|
65 |
plt.title("Misclassified Samples")
|
66 |
plt.axis('off')
|
67 |
+
plt.show()
|
68 |
+
|
69 |
+
def find_lr(model, criterion, optimizer, train_loader, num_epochs=1, start_lr=1e-7, end_lr=10, lr_multiplier=1.1):
|
70 |
+
"""
|
71 |
+
Find the optimal learning rate using LR Finder.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
- model: The model to train
|
75 |
+
- criterion: Loss function (e.g., CrossEntropyLoss)
|
76 |
+
- optimizer: Optimizer (e.g., SGD)
|
77 |
+
- train_loader: DataLoader for training data
|
78 |
+
- num_epochs: Number of epochs to run the LR Finder (typically 1-2)
|
79 |
+
- start_lr: Starting learning rate for the experiment
|
80 |
+
- end_lr: Maximum learning rate (used for scaling)
|
81 |
+
- lr_multiplier: Factor by which the learning rate is increased every batch
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
- A plot of loss vs learning rate
|
85 |
+
"""
|
86 |
+
lrs = []
|
87 |
+
losses = []
|
88 |
+
avg_loss = 0.0
|
89 |
+
batch_count = 0
|
90 |
+
|
91 |
+
lr = start_lr
|
92 |
+
for epoch in range(num_epochs):
|
93 |
+
model.train()
|
94 |
+
for inputs, labels in train_loader:
|
95 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
96 |
+
optimizer.param_groups[0]['lr'] = lr # Set the learning rate
|
97 |
+
|
98 |
+
# Forward pass
|
99 |
+
optimizer.zero_grad()
|
100 |
+
outputs = model(inputs)
|
101 |
+
loss = criterion(outputs, labels)
|
102 |
+
loss.backward()
|
103 |
+
optimizer.step()
|
104 |
+
|
105 |
+
avg_loss += loss.item()
|
106 |
+
batch_count += 1
|
107 |
+
lrs.append(lr)
|
108 |
+
losses.append(loss.item())
|
109 |
+
|
110 |
+
# Increase the learning rate for next batch
|
111 |
+
lr *= lr_multiplier
|
112 |
+
|
113 |
+
avg_loss /= batch_count
|
114 |
+
print(f"Epoch [{epoch+1}/{num_epochs}], Avg Loss: {avg_loss:.4f}")
|
115 |
+
|
116 |
+
# Plot the loss vs learning rate
|
117 |
+
plt.plot(lrs, losses)
|
118 |
+
plt.xscale('log')
|
119 |
+
plt.xlabel('Learning Rate')
|
120 |
+
plt.ylabel('Loss')
|
121 |
+
plt.title('Learning Rate Finder')
|
122 |
+
plt.show()
|
123 |
+
|