ResNet50-image-classifier-app / resnet_execute.py
Ubuntu
Added graphs for top-1 and top-5 training and test accuracies. Added displaying of misclassified samples.
d759493
raw
history blame
8.2 kB
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from resnet_model import ResNet50
from tqdm import tqdm
from torchvision import datasets
from checkpoint import save_checkpoint, load_checkpoint
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
# Define transformations
transform = transforms.Compose([
transforms.Resize(256), # Resize the smaller side to 256 pixels while keeping aspect ratio
transforms.CenterCrop(224), # Then crop to 224x224 pixels from the center
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageNet normalization
])
# Train dataset and loader
trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=transform)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=16, pin_memory=True)
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=transform )
testloader = DataLoader(testset, batch_size=1000, shuffle=False, num_workers=16, pin_memory=True)
# Initialize model, loss function, and optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet50()
model = torch.nn.DataParallel(model)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
# Training function
from torch.amp import autocast
def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=4):
model.train()
running_loss = 0.0
correct1 = 0
correct5 = 0
total = 0
pbar = tqdm(train_loader)
for batch_idx, (inputs, targets) in enumerate(pbar):
inputs, targets = inputs.to(device), targets.to(device)
with autocast(device_type='cuda'):
outputs = model(inputs)
loss = criterion(outputs, targets) / accumulation_steps
loss.backward()
if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader):
optimizer.step()
optimizer.zero_grad()
running_loss += loss.item() * accumulation_steps
_, predicted = outputs.topk(5, 1, True, True)
total += targets.size(0)
correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')
if (batch_idx + 1) % 50 == 0:
torch.cuda.empty_cache()
return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)
# Testing function
def test(model, device, test_loader, criterion):
model.eval()
test_loss = 0
correct1 = 0
correct5 = 0
total = 0
misclassified_images = []
misclassified_labels = []
misclassified_preds = []
with torch.no_grad():
for inputs, targets in test_loader:
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.topk(5, 1, True, True)
total += targets.size(0)
correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()
# Collect misclassified samples
for i in range(inputs.size(0)):
if targets[i] not in predicted[i, :1]:
misclassified_images.append(inputs[i].cpu())
misclassified_labels.append(targets[i].cpu())
misclassified_preds.append(predicted[i, :1].cpu())
test_accuracy1 = 100. * correct1 / total
test_accuracy5 = 100. * correct5 / total
print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds
# Main execution
if __name__ == '__main__':
# Early stopping parameters and checkpoint path
checkpoint_path = "checkpoint.pth"
best_loss = float('inf')
patience = 5
patience_counter = 0
# Load checkpoint if it exists to resume training
try:
model, optimizer, best_test_accuracy = load_checkpoint(model, optimizer, checkpoint_path)
except FileNotFoundError:
print("No checkpoint found, starting from scratch.")
# Store results for each epoch
results = []
learning_rates = []
for epoch in range(1, 6): # 20 epochs
train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Train Top-5 Acc: {train_accuracy5:.2f} | Test Top-1 Acc: {test_accuracy1:.2f} | Test Top-5 Acc: {test_accuracy5:.2f}')
# Append results for this epoch
results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
learning_rates.append(optimizer.param_groups[0]['lr'])
if test_loss < best_loss:
best_loss = test_loss
patience_counter = 0
save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
else:
patience_counter += 1
if patience_counter >= patience:
print("Early stopping triggered. Training terminated.")
break
# Print the Top-1 accuracy results in a tab-separated format
print("\nEpoch\tTrain Top-1 Accuracy\tTest Top-1 Accuracy")
for epoch, train_acc1, test_acc1, *_ in results:
print(f"{epoch}\t{train_acc1:.2f}\t{test_acc1:.2f}")
# Plotting
epochs = [r[0] for r in results]
train_acc1 = [r[1] for r in results]
train_acc5 = [r[2] for r in results]
test_acc1 = [r[3] for r in results]
test_acc5 = [r[4] for r in results]
train_losses = [r[5] for r in results]
test_losses = [r[6] for r in results]
plt.figure(figsize=(12, 8))
plt.subplot(2, 2, 1)
plt.plot(epochs, train_acc1, label='Train Top-1 Acc')
plt.plot(epochs, test_acc1, label='Test Top-1 Acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Top-1 Accuracy')
plt.subplot(2, 2, 2)
plt.plot(epochs, train_acc5, label='Train Top-5 Acc')
plt.plot(epochs, test_acc5, label='Test Top-5 Acc')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Top-5 Accuracy')
plt.subplot(2, 2, 3)
plt.plot(epochs, train_losses, label='Train Loss')
plt.plot(epochs, test_losses, label='Test Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Loss')
plt.subplot(2, 2, 4)
plt.plot(epochs, learning_rates, label='Learning Rate')
plt.xlabel('Epoch')
plt.ylabel('Learning Rate')
plt.legend()
plt.title('Learning Rate')
plt.tight_layout()
plt.show()
# Display some misclassified samples
if misclassified_images:
print("\nDisplaying some misclassified samples from the last epoch:")
misclassified_grid = make_grid(misclassified_images[:16], nrow=4, normalize=True, scale_each=True)
plt.figure(figsize=(8, 8))
plt.imshow(misclassified_grid.permute(1, 2, 0))
plt.title("Misclassified Samples")
plt.axis('off')
plt.show()