Spaces:
Build error
Build error
| import torch | |
| import torchvision | |
| import torchvision.transforms as transforms | |
| from torch.utils.data import DataLoader | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| from resnet_model import ResNet50 | |
| from tqdm import tqdm | |
| from torchvision import datasets | |
| from checkpoint import save_checkpoint, load_checkpoint | |
| # Define transformations | |
| transform = transforms.Compose([ | |
| transforms.Resize(256), # Resize the smaller side to 256 pixels while keeping aspect ratio | |
| transforms.CenterCrop(224), # Then crop to 224x224 pixels from the center | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageNet normalization | |
| ]) | |
| # Train dataset and loader | |
| trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=transform) | |
| trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=16, pin_memory=True) | |
| testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=transform ) | |
| testloader = DataLoader(testset, batch_size=1000, shuffle=False, num_workers=16, pin_memory=True) | |
| # Initialize model, loss function, and optimizer | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = ResNet50() | |
| model = torch.nn.DataParallel(model) | |
| model = model.to(device) | |
| criterion = nn.CrossEntropyLoss() | |
| optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) | |
| # Training function | |
| from torch.amp import autocast | |
| from tqdm import tqdm | |
| def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=4): | |
| model.train() | |
| running_loss = 0.0 | |
| correct = 0 | |
| total = 0 | |
| pbar = tqdm(train_loader) | |
| for batch_idx, (inputs, targets) in enumerate(pbar): | |
| inputs, targets = inputs.to(device), targets.to(device) | |
| with autocast(device_type='cuda'): | |
| outputs = model(inputs) | |
| loss = criterion(outputs, targets) / accumulation_steps | |
| loss.backward() | |
| if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader): | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| running_loss += loss.item() * accumulation_steps | |
| _, predicted = outputs.max(1) | |
| total += targets.size(0) | |
| correct += predicted.eq(targets).sum().item() | |
| pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Accuracy: {100. * correct / total:.2f}%') | |
| if (batch_idx + 1) % 50 == 0: | |
| torch.cuda.empty_cache() | |
| return 100. * correct / total | |
| # Testing function | |
| def test(model, device, test_loader, criterion): | |
| model.eval() | |
| test_loss = 0 | |
| correct = 0 | |
| total = 0 | |
| with torch.no_grad(): | |
| for inputs, targets in test_loader: | |
| inputs, targets = inputs.to(device), targets.to(device) | |
| outputs = model(inputs) | |
| loss = criterion(outputs, targets) | |
| test_loss += loss.item() | |
| _, predicted = outputs.max(1) | |
| total += targets.size(0) | |
| correct += predicted.eq(targets).sum().item() | |
| test_accuracy = 100.*correct/total | |
| print(f'Test Loss: {test_loss/len(test_loader):.4f}, Accuracy: {test_accuracy:.2f}%') | |
| return test_accuracy, test_loss/len(test_loader) | |
| # Main execution | |
| if __name__ == '__main__': | |
| # Early stopping parameters and checkpoint path | |
| checkpoint_path = "checkpoint.pth" | |
| best_loss = float('inf') | |
| patience = 5 | |
| patience_counter = 0 | |
| # Load checkpoint if it exists to resume training | |
| try: | |
| model, optimizer, best_test_accuracy = load_checkpoint(model, optimizer, checkpoint_path) | |
| except FileNotFoundError: | |
| print("No checkpoint found, starting from scratch.") | |
| # Store results for each epoch | |
| results = [] | |
| for epoch in range(1, 6): # 20 epochs | |
| train_accuracy = train(model, device, trainloader, optimizer, criterion, epoch) | |
| test_accuracy, test_loss = test(model, device, testloader, criterion) | |
| print(f'Epoch {epoch} | Train Accuracy: {train_accuracy:.2f}% | Test Accuracy: {test_accuracy:.2f}%') | |
| # Append results for this epoch | |
| results.append((epoch, train_accuracy, test_accuracy)) | |
| if test_loss < best_loss: | |
| best_loss = test_loss | |
| patience_counter = 0 | |
| save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path) | |
| else: | |
| patience_counter += 1 | |
| if patience_counter >= patience: | |
| print("Early stopping triggered. Training terminated.") | |
| break | |
| # Print the results in a tab-separated format | |
| print("\nEpoch\tTrain Accuracy\tTest Accuracy") | |
| for epoch, train_acc, test_acc in results: | |
| print(f"{epoch}\t{train_acc:.2f}\t{test_acc:.2f}") | |