Ubuntu
lower batch size and accumulation argument. Changed misclassified samples to be for last epoch only
2e9c13e
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
from torch.utils.data import DataLoader | |
import torch.nn as nn | |
import torch.optim as optim | |
from resnet_model import ResNet50 | |
from tqdm import tqdm | |
from torchvision import datasets | |
from checkpoint import save_checkpoint, load_checkpoint | |
import matplotlib.pyplot as plt | |
from torchvision.utils import make_grid | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
import numpy as np | |
# Define transformations | |
train_transform = A.Compose([ | |
A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0), | |
A.HorizontalFlip(p=0.5), | |
A.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8), | |
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
ToTensorV2() | |
]) | |
test_transform = A.Compose([ | |
A.Resize(height=256, width=256), | |
A.CenterCrop(height=224, width=224), | |
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
ToTensorV2() | |
]) | |
# Train dataset and loader | |
trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=lambda img: train_transform(image=np.array(img))['image']) | |
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=16, pin_memory=True) | |
testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image']) | |
testloader = DataLoader(testset, batch_size=500, shuffle=False, num_workers=16, pin_memory=True) | |
# Initialize model, loss function, and optimizer | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = ResNet50() | |
model = torch.nn.DataParallel(model) | |
model = model.to(device) | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) | |
# Training function | |
from torch.amp import autocast | |
def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=2): | |
model.train() | |
running_loss = 0.0 | |
correct1 = 0 | |
correct5 = 0 | |
total = 0 | |
pbar = tqdm(train_loader) | |
for batch_idx, (inputs, targets) in enumerate(pbar): | |
inputs, targets = inputs.to(device), targets.to(device) | |
with autocast(device_type='cuda'): | |
outputs = model(inputs) | |
loss = criterion(outputs, targets) / accumulation_steps | |
loss.backward() | |
if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader): | |
optimizer.step() | |
optimizer.zero_grad() | |
running_loss += loss.item() * accumulation_steps | |
_, predicted = outputs.topk(5, 1, True, True) | |
total += targets.size(0) | |
correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item() | |
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item() | |
pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}') | |
if (batch_idx + 1) % 50 == 0: | |
torch.cuda.empty_cache() | |
return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader) | |
# Testing function | |
def test(model, device, test_loader, criterion): | |
model.eval() | |
test_loss = 0 | |
correct1 = 0 | |
correct5 = 0 | |
total = 0 | |
misclassified_images = [] | |
misclassified_labels = [] | |
misclassified_preds = [] | |
with torch.no_grad(): | |
for inputs, targets in test_loader: | |
inputs, targets = inputs.to(device), targets.to(device) | |
outputs = model(inputs) | |
loss = criterion(outputs, targets) | |
test_loss += loss.item() | |
_, predicted = outputs.topk(5, 1, True, True) | |
total += targets.size(0) | |
correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item() | |
correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item() | |
# Collect misclassified samples | |
for i in range(inputs.size(0)): | |
if targets[i] not in predicted[i, :1]: | |
misclassified_images.append(inputs[i].cpu()) | |
misclassified_labels.append(targets[i].cpu()) | |
misclassified_preds.append(predicted[i, :1].cpu()) | |
test_accuracy1 = 100. * correct1 / total | |
test_accuracy5 = 100. * correct5 / total | |
print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}') | |
return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds | |
# Main execution | |
if __name__ == '__main__': | |
# Early stopping parameters and checkpoint path | |
checkpoint_path = "checkpoint.pth" | |
best_loss = float('inf') | |
patience = 5 | |
patience_counter = 0 | |
# Load checkpoint if it exists to resume training | |
try: | |
model, optimizer, best_test_accuracy = load_checkpoint(model, optimizer, checkpoint_path) | |
except FileNotFoundError: | |
print("No checkpoint found, starting from scratch.") | |
# Store results for each epoch | |
results = [] | |
learning_rates = [] | |
for epoch in range(1, 26): # 20 epochs | |
train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch) | |
test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion) | |
print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Train Top-5 Acc: {train_accuracy5:.2f} | Test Top-1 Acc: {test_accuracy1:.2f} | Test Top-5 Acc: {test_accuracy5:.2f}') | |
# Append results for this epoch | |
results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss)) | |
learning_rates.append(optimizer.param_groups[0]['lr']) | |
if test_loss < best_loss: | |
best_loss = test_loss | |
patience_counter = 0 | |
save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path) | |
else: | |
patience_counter += 1 | |
if patience_counter >= patience: | |
print("Early stopping triggered. Training terminated.") | |
break | |
# Only process misclassified samples after the last epoch | |
if epoch == 25: | |
# Display or process misclassified samples | |
if misclassified_images: | |
print("\nDisplaying some misclassified samples from the last epoch:") | |
misclassified_grid = make_grid(misclassified_images[:16], nrow=4, normalize=True, scale_each=True) | |
plt.figure(figsize=(8, 8)) | |
plt.imshow(misclassified_grid.permute(1, 2, 0)) | |
plt.title("Misclassified Samples") | |
plt.axis('off') | |
plt.show() | |
# Print the Top-1 accuracy results in a tab-separated format | |
print("\nEpoch\tTrain Top-1 Accuracy\tTest Top-1 Accuracy") | |
for epoch, train_acc1, test_acc1, *_ in results: | |
print(f"{epoch}\t{train_acc1:.2f}\t{test_acc1:.2f}") | |
# Plotting | |
epochs = [r[0] for r in results] | |
train_acc1 = [r[1] for r in results] | |
train_acc5 = [r[2] for r in results] | |
test_acc1 = [r[3] for r in results] | |
test_acc5 = [r[4] for r in results] | |
train_losses = [r[5] for r in results] | |
test_losses = [r[6] for r in results] | |
plt.figure(figsize=(12, 8)) | |
plt.subplot(2, 2, 1) | |
plt.plot(epochs, train_acc1, label='Train Top-1 Acc') | |
plt.plot(epochs, test_acc1, label='Test Top-1 Acc') | |
plt.xlabel('Epoch') | |
plt.ylabel('Accuracy') | |
plt.legend() | |
plt.title('Top-1 Accuracy') | |
plt.subplot(2, 2, 2) | |
plt.plot(epochs, train_acc5, label='Train Top-5 Acc') | |
plt.plot(epochs, test_acc5, label='Test Top-5 Acc') | |
plt.xlabel('Epoch') | |
plt.ylabel('Accuracy') | |
plt.legend() | |
plt.title('Top-5 Accuracy') | |
plt.subplot(2, 2, 3) | |
plt.plot(epochs, train_losses, label='Train Loss') | |
plt.plot(epochs, test_losses, label='Test Loss') | |
plt.xlabel('Epoch') | |
plt.ylabel('Loss') | |
plt.legend() | |
plt.title('Loss') | |
plt.subplot(2, 2, 4) | |
plt.plot(epochs, learning_rates, label='Learning Rate') | |
plt.xlabel('Epoch') | |
plt.ylabel('Learning Rate') | |
plt.legend() | |
plt.title('Learning Rate') | |
plt.tight_layout() | |
plt.show() | |