File size: 2,946 Bytes
bf843fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from resnet_model import ResNet50
from tqdm import tqdm

# Define transformations
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2616))
])

# Load CIFAR-10 dataset
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = DataLoader(testset, batch_size=1000, shuffle=False, num_workers=4)

# Initialize model, loss function, and optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet50().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)

# Training function
def train(model, device, train_loader, optimizer, criterion, epoch):
    model.train()
    running_loss = 0.0
    correct = 0
    total = 0
    pbar = tqdm(train_loader)

    for batch_idx, (inputs, targets) in enumerate(pbar):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()

        pbar.set_description(desc=f'Epoch {epoch} | Loss: {loss.item():.4f} | Accuracy: {100.*correct/total:.2f}%')

    return 100.*correct/total

# Testing function
def test(model, device, test_loader, criterion):
    model.eval()
    test_loss = 0
    correct = 0
    total = 0

    with torch.no_grad():
        for inputs, targets in test_loader:
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, targets)

            test_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

    test_accuracy = 100.*correct/total
    print(f'Test Loss: {test_loss/len(test_loader):.4f}, Accuracy: {test_accuracy:.2f}%')
    return test_accuracy

# Main execution
if __name__ == '__main__':
    for epoch in range(1, 6):  # 20 epochs
        train_accuracy = train(model, device, trainloader, optimizer, criterion, epoch)
        test_accuracy = test(model, device, testloader, criterion)
        print(f'Epoch {epoch} | Train Accuracy: {train_accuracy:.2f}% | Test Accuracy: {test_accuracy:.2f}%')