File size: 8,839 Bytes
bf843fe
 
 
 
 
 
 
 
d695662
41b8141
d759493
 
2959565
 
 
6e2d47c
bf843fe
 
2959565
 
 
 
 
 
 
 
 
 
 
 
 
bf843fe
 
d695662
2959565
6e2d47c
bf843fe
2959565
6e2d47c
bf843fe
 
 
6e2d47c
d695662
 
 
6e2d47c
d695662
bf843fe
 
 
 
d695662
 
6e2d47c
bf843fe
 
d759493
 
bf843fe
 
 
 
 
 
d695662
 
 
 
bf843fe
 
d695662
 
 
 
 
d759493
bf843fe
d759493
 
bf843fe
d759493
d695662
 
 
 
d759493
bf843fe
 
 
 
 
d759493
 
bf843fe
d759493
 
 
bf843fe
 
 
 
 
 
 
 
d759493
bf843fe
d759493
 
 
 
 
 
 
 
 
bf843fe
d759493
 
 
 
bf843fe
 
 
41b8141
 
 
 
 
 
 
 
 
 
 
5005854
 
d759493
5005854
2e9c13e
d759493
 
 
5005854
 
d759493
 
5005854
41b8141
 
 
 
 
 
 
 
 
 
5005854
2e9c13e
 
 
 
 
 
 
 
 
 
 
 
d759493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from resnet_model import ResNet50
from tqdm import tqdm
from torchvision import datasets
from checkpoint import save_checkpoint, load_checkpoint
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
import albumentations as A
from albumentations.pytorch import ToTensorV2
import numpy as np
from torchsummary import summary

# Define transformations
train_transform = A.Compose([
    A.RandomResizedCrop(height=224, width=224, scale=(0.08, 1.0), ratio=(3/4, 4/3), p=1.0),
    A.HorizontalFlip(p=0.5),
    A.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8),
    A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ToTensorV2()
])

test_transform = A.Compose([
    A.Resize(height=256, width=256),
    A.CenterCrop(height=224, width=224),
    A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ToTensorV2()
])

# Train dataset and loader
trainset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/train', transform=lambda img: train_transform(image=np.array(img))['image'])
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8, pin_memory=True)

testset = datasets.ImageFolder(root='/mnt/imagenet/ILSVRC/Data/CLS-LOC/val', transform=lambda img: test_transform(image=np.array(img))['image'])
testloader = DataLoader(testset, batch_size=500, shuffle=False, num_workers=8, pin_memory=True)

# Initialize model, loss function, and optimizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print( device )
model = ResNet50()
model = torch.nn.DataParallel(model)
model = model.to(device)
summary(model, input_size=(3, 224, 224))

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)

# Training function
from torch.amp import autocast

def train(model, device, train_loader, optimizer, criterion, epoch, accumulation_steps=4):
    model.train()
    running_loss = 0.0
    correct1 = 0
    correct5 = 0
    total = 0
    pbar = tqdm(train_loader)

    for batch_idx, (inputs, targets) in enumerate(pbar):
        inputs, targets = inputs.to(device), targets.to(device)

        with autocast(device_type='cuda'):
            outputs = model(inputs)
            loss = criterion(outputs, targets) / accumulation_steps

        loss.backward()

        if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_loader):
            optimizer.step()
            optimizer.zero_grad()

        running_loss += loss.item() * accumulation_steps
        _, predicted = outputs.topk(5, 1, True, True)
        total += targets.size(0)
        correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
        correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()

        pbar.set_description(desc=f'Epoch {epoch} | Loss: {running_loss / (batch_idx + 1):.4f} | Top-1 Acc: {100. * correct1 / total:.2f} | Top-5 Acc: {100. * correct5 / total:.2f}')

        if (batch_idx + 1) % 50 == 0:
            torch.cuda.empty_cache()

    return 100. * correct1 / total, 100. * correct5 / total, running_loss / len(train_loader)

# Testing function
def test(model, device, test_loader, criterion):
    model.eval()
    test_loss = 0
    correct1 = 0
    correct5 = 0
    total = 0
    misclassified_images = []
    misclassified_labels = []
    misclassified_preds = []

    with torch.no_grad():
        for inputs, targets in test_loader:
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = model(inputs)
            loss = criterion(outputs, targets)

            test_loss += loss.item()
            _, predicted = outputs.topk(5, 1, True, True)
            total += targets.size(0)
            correct1 += predicted[:, :1].eq(targets.view(-1, 1).expand_as(predicted[:, :1])).sum().item()
            correct5 += predicted.eq(targets.view(-1, 1).expand_as(predicted)).sum().item()

            # Collect misclassified samples
            for i in range(inputs.size(0)):
                if targets[i] not in predicted[i, :1]:
                    misclassified_images.append(inputs[i].cpu())
                    misclassified_labels.append(targets[i].cpu())
                    misclassified_preds.append(predicted[i, :1].cpu())

    test_accuracy1 = 100. * correct1 / total
    test_accuracy5 = 100. * correct5 / total
    print(f'Test Loss: {test_loss/len(test_loader):.4f}, Top-1 Accuracy: {test_accuracy1:.2f}, Top-5 Accuracy: {test_accuracy5:.2f}')
    return test_accuracy1, test_accuracy5, test_loss / len(test_loader), misclassified_images, misclassified_labels, misclassified_preds

# Main execution
if __name__ == '__main__':
    # Early stopping parameters and checkpoint path
    checkpoint_path = "checkpoint.pth"
    best_loss = float('inf')
    patience = 5
    patience_counter = 0
    # Load checkpoint if it exists to resume training
    try:
        model, optimizer, best_test_accuracy = load_checkpoint(model, optimizer, checkpoint_path)
    except FileNotFoundError:
        print("No checkpoint found, starting from scratch.")

    # Store results for each epoch
    results = []
    learning_rates = []

    for epoch in range(1, 26):  # 20 epochs
        train_accuracy1, train_accuracy5, train_loss = train(model, device, trainloader, optimizer, criterion, epoch)
        test_accuracy1, test_accuracy5, test_loss, misclassified_images, misclassified_labels, misclassified_preds = test(model, device, testloader, criterion)
        print(f'Epoch {epoch} | Train Top-1 Acc: {train_accuracy1:.2f} | Train Top-5 Acc: {train_accuracy5:.2f} | Test Top-1 Acc: {test_accuracy1:.2f} | Test Top-5 Acc: {test_accuracy5:.2f}')  
        
        # Append results for this epoch
        results.append((epoch, train_accuracy1, train_accuracy5, test_accuracy1, test_accuracy5, train_loss, test_loss))
        learning_rates.append(optimizer.param_groups[0]['lr'])
        
        if test_loss < best_loss:
            best_loss = test_loss
            patience_counter = 0
            save_checkpoint(model, optimizer, epoch, test_loss, checkpoint_path)
        else: 
            patience_counter += 1

        if patience_counter >= patience:
            print("Early stopping triggered. Training terminated.")
            break

        # Only process misclassified samples after the last epoch
        if epoch == 25:
            # Display or process misclassified samples
            if misclassified_images:
                print("\nDisplaying some misclassified samples from the last epoch:")
                misclassified_grid = make_grid(misclassified_images[:16], nrow=4, normalize=True, scale_each=True)
                plt.figure(figsize=(8, 8))
                plt.imshow(misclassified_grid.permute(1, 2, 0))
                plt.title("Misclassified Samples")
                plt.axis('off')
                plt.show()

    # Print the Top-1 accuracy results in a tab-separated format
    print("\nEpoch\tTrain Top-1 Accuracy\tTest Top-1 Accuracy")
    for epoch, train_acc1, test_acc1, *_ in results:
        print(f"{epoch}\t{train_acc1:.2f}\t{test_acc1:.2f}")

    # Plotting
    epochs = [r[0] for r in results]
    train_acc1 = [r[1] for r in results]
    train_acc5 = [r[2] for r in results]
    test_acc1 = [r[3] for r in results]
    test_acc5 = [r[4] for r in results]
    train_losses = [r[5] for r in results]
    test_losses = [r[6] for r in results]

    plt.figure(figsize=(12, 8))
    plt.subplot(2, 2, 1)
    plt.plot(epochs, train_acc1, label='Train Top-1 Acc')
    plt.plot(epochs, test_acc1, label='Test Top-1 Acc')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.title('Top-1 Accuracy')

    plt.subplot(2, 2, 2)
    plt.plot(epochs, train_acc5, label='Train Top-5 Acc')
    plt.plot(epochs, test_acc5, label='Test Top-5 Acc')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.legend()
    plt.title('Top-5 Accuracy')

    plt.subplot(2, 2, 3)
    plt.plot(epochs, train_losses, label='Train Loss')
    plt.plot(epochs, test_losses, label='Test Loss')
    plt.xlabel('Epoch')
    plt.ylabel('Loss')
    plt.legend()
    plt.title('Loss')

    plt.subplot(2, 2, 4)
    plt.plot(epochs, learning_rates, label='Learning Rate')
    plt.xlabel('Epoch')
    plt.ylabel('Learning Rate')
    plt.legend()
    plt.title('Learning Rate')

    plt.tight_layout()
    plt.show()