import pickle import regex as re from typing import List, Tuple class HindiTokenizer: def __init__(self, model_path: str = 'bpe_results.pkl'): # Load the BPE model with open(model_path, 'rb') as f: self.merges, self.ids, self.num_merges = pickle.load(f) # Initialize vocabulary self.vocab = {idx: bytes([idx]) for idx in range(256)} for (p0, p1), idx in self.merges.items(): self.vocab[idx] = self.vocab[p0] + self.vocab[p1] # Hindi-focused pattern self.pattern = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{N}+| ?(?:[\u0904-\u0939\u093d-\u093d\u0950-\u0950\u0958-\u0961\u0970-\u097f\ua8f2-\ua8fe\U00011b00-\U00011b09\u1cd3-\u1cd3\u1ce9-\u1cec\u1cee-\u1cf3\u1cf5-\u1cf6\u1cfa-\u1cfa][\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\ua8e0-\ua8f1\ua8ff-\ua8ff\u1cd0-\u1cd2\u1cd4-\u1ce8\u1ced-\u1ced\u1cf4-\u1cf4\u1cf7-\u1cf9]*)+| ?\p{L}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") def tokenize(self, text: str) -> Tuple[List[int], List[str], List[str]]: # Get initial tokens using regex tokens = re.findall(self.pattern, text) # Convert tokens to byte sequences and maintain grouping byte_tokens = [token.encode('utf-8') for token in tokens] token_list = [list(token) for token in byte_tokens] # Process each token final_tokens = [] for token in token_list: current_token = list(token) while len(current_token) >= 2: stats = self._get_stats([current_token]) if not stats: break pair = min(stats, key=lambda p: self.merges.get(p, float("inf"))) if pair not in self.merges: break idx = self.merges[pair] current_token = self._merge([current_token], pair, idx)[0] final_tokens.extend(current_token) # Decode the tokens decoded_tokens = [self.vocab[idx].decode("utf-8", errors="replace") for idx in final_tokens] return final_tokens, tokens, decoded_tokens def _get_stats(self, token_list): """Count frequency of pairs across all tokens""" counts = {} for token in token_list: if len(token) < 2: continue for pair in zip(token, token[1:]): counts[pair] = counts.get(pair, 0) + 1 return counts def _merge(self, token_list, pair, idx): """Merge all occurrences of pair within each token""" newids = [] for token in token_list: if len(token) < 2: newids.append(token) continue new_token = [] i = 0 while i < len(token): if i < len(token) - 1 and (token[i], token[i+1]) == pair: new_token.append(idx) i += 2 else: new_token.append(token[i]) i += 1 newids.append(new_token) return newids