Hindi-tokenizer / BPE.py
atiwari751's picture
Streamlit app working
af587c3
import pickle
import regex as re
from tqdm import tqdm
# Read text from a file
with open('text_file.txt', 'r', encoding='utf-8') as file:
text = file.read()
# Hindi-focused pattern
gpt2pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{N}+| ?(?:[\u0904-\u0939\u093d-\u093d\u0950-\u0950\u0958-\u0961\u0970-\u097f\ua8f2-\ua8fe\U00011b00-\U00011b09\u1cd3-\u1cd3\u1ce9-\u1cec\u1cee-\u1cf3\u1cf5-\u1cf6\u1cfa-\u1cfa][\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\ua8e0-\ua8f1\ua8ff-\ua8ff\u1cd0-\u1cd2\u1cd4-\u1ce8\u1ced-\u1ced\u1cf4-\u1cf4\u1cf7-\u1cf9]*)+| ?\p{L}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
# Apply the regex pattern to the raw text to tokenize it
tokens = re.findall(gpt2pat, text)
# Convert tokens to byte sequences
byte_tokens = [token.encode('utf-8') for token in tokens]
# Create a list of byte sequences, each representing a token
tokens = [list(token) for token in byte_tokens]
def get_stats(token_list):
"""Count frequency of pairs across all tokens"""
counts = {}
# Count pairs within each token
for token in token_list:
if len(token) < 2:
continue
for pair in zip(token, token[1:]):
counts[pair] = counts.get(pair, 0) + 1
return counts
def merge(token_list, pair, idx):
"""Merge all occurrences of pair within each token"""
newids = []
for token in token_list:
if len(token) < 2:
newids.append(token)
continue
new_token = []
i = 0
while i < len(token):
if i < len(token) - 1 and (token[i], token[i+1]) == pair:
new_token.append(idx)
i += 2
else:
new_token.append(token[i])
i += 1
newids.append(new_token)
return newids
def perform_bpe():
vocab_size = 4000 # the desired final vocabulary size
num_merges = vocab_size - 256
token_list = list(tokens) # copy so we don't destroy the original list
# Calculate total bytes before compression
total_bytes_before = sum(len(token) for token in token_list)
merges = {} # (int, int) -> int
for i in tqdm(range(num_merges), desc="Performing BPE", unit="merge"):
stats = get_stats(token_list)
if not stats: # No more pairs to merge
break
# Find most frequent pair
pair = max(stats, key=stats.get)
idx = 256 + i
# Perform the merge
token_list = merge(token_list, pair, idx)
merges[pair] = idx
# Calculate total bytes after compression
total_bytes_after = sum(len(token) for token in token_list)
print("---")
print("Total bytes before:", total_bytes_before)
print("Total bytes after:", total_bytes_after)
print(f"Compression ratio: {total_bytes_before / total_bytes_after:.2f}X")
# Flatten for storage, but maintain token boundaries
flat_ids = []
for token in token_list:
flat_ids.extend(token)
return merges, flat_ids, num_merges
if __name__ == "__main__":
print('---')
print("length of text (characters):", len(text))
print("length of text (words):", len(text.split()))
print('---')
print("length of tokens:", len(tokens))
#print("sample tokens:", tokens[:5]) # Show first 5 tokens
# Run BPE and save results
merges, ids, num_merges = perform_bpe()
# Save merges and vocab to a file
with open('bpe_results.pkl', 'wb') as f:
pickle.dump((merges, ids, num_merges), f)