Spaces:
Sleeping
Sleeping
import pickle | |
import regex as re | |
from tqdm import tqdm | |
# Read text from a file | |
with open('text_file.txt', 'r', encoding='utf-8') as file: | |
text = file.read() | |
# Hindi-focused pattern | |
gpt2pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{N}+| ?(?:[\u0904-\u0939\u093d-\u093d\u0950-\u0950\u0958-\u0961\u0970-\u097f\ua8f2-\ua8fe\U00011b00-\U00011b09\u1cd3-\u1cd3\u1ce9-\u1cec\u1cee-\u1cf3\u1cf5-\u1cf6\u1cfa-\u1cfa][\u0900-\u0903\u093a-\u093c\u093e-\u094f\u0951-\u0957\u0962-\u0963\ua8e0-\ua8f1\ua8ff-\ua8ff\u1cd0-\u1cd2\u1cd4-\u1ce8\u1ced-\u1ced\u1cf4-\u1cf4\u1cf7-\u1cf9]*)+| ?\p{L}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
# Apply the regex pattern to the raw text to tokenize it | |
tokens = re.findall(gpt2pat, text) | |
# Convert tokens to byte sequences | |
byte_tokens = [token.encode('utf-8') for token in tokens] | |
# Create a list of byte sequences, each representing a token | |
tokens = [list(token) for token in byte_tokens] | |
def get_stats(token_list): | |
"""Count frequency of pairs across all tokens""" | |
counts = {} | |
# Count pairs within each token | |
for token in token_list: | |
if len(token) < 2: | |
continue | |
for pair in zip(token, token[1:]): | |
counts[pair] = counts.get(pair, 0) + 1 | |
return counts | |
def merge(token_list, pair, idx): | |
"""Merge all occurrences of pair within each token""" | |
newids = [] | |
for token in token_list: | |
if len(token) < 2: | |
newids.append(token) | |
continue | |
new_token = [] | |
i = 0 | |
while i < len(token): | |
if i < len(token) - 1 and (token[i], token[i+1]) == pair: | |
new_token.append(idx) | |
i += 2 | |
else: | |
new_token.append(token[i]) | |
i += 1 | |
newids.append(new_token) | |
return newids | |
def perform_bpe(): | |
vocab_size = 4000 # the desired final vocabulary size | |
num_merges = vocab_size - 256 | |
token_list = list(tokens) # copy so we don't destroy the original list | |
# Calculate total bytes before compression | |
total_bytes_before = sum(len(token) for token in token_list) | |
merges = {} # (int, int) -> int | |
for i in tqdm(range(num_merges), desc="Performing BPE", unit="merge"): | |
stats = get_stats(token_list) | |
if not stats: # No more pairs to merge | |
break | |
# Find most frequent pair | |
pair = max(stats, key=stats.get) | |
idx = 256 + i | |
# Perform the merge | |
token_list = merge(token_list, pair, idx) | |
merges[pair] = idx | |
# Calculate total bytes after compression | |
total_bytes_after = sum(len(token) for token in token_list) | |
print("---") | |
print("Total bytes before:", total_bytes_before) | |
print("Total bytes after:", total_bytes_after) | |
print(f"Compression ratio: {total_bytes_before / total_bytes_after:.2f}X") | |
# Flatten for storage, but maintain token boundaries | |
flat_ids = [] | |
for token in token_list: | |
flat_ids.extend(token) | |
return merges, flat_ids, num_merges | |
if __name__ == "__main__": | |
print('---') | |
print("length of text (characters):", len(text)) | |
print("length of text (words):", len(text.split())) | |
print('---') | |
print("length of tokens:", len(tokens)) | |
#print("sample tokens:", tokens[:5]) # Show first 5 tokens | |
# Run BPE and save results | |
merges, ids, num_merges = perform_bpe() | |
# Save merges and vocab to a file | |
with open('bpe_results.pkl', 'wb') as f: | |
pickle.dump((merges, ids, num_merges), f) | |