atifsial123 commited on
Commit
5e0fc5d
·
verified ·
1 Parent(s): 6c8fdd0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -15
app.py CHANGED
@@ -1,4 +1,3 @@
1
- # Install necessary libraries
2
  import os
3
  import subprocess
4
 
@@ -21,7 +20,6 @@ from sklearn.model_selection import train_test_split
21
 
22
  # Function to convert a list to a DataFrame
23
  def list_to_dataframe(data_list):
24
- # Convert the list to a DataFrame (assuming it's a list of dicts or tuples)
25
  df = pd.DataFrame(data_list)
26
  return df
27
 
@@ -37,7 +35,6 @@ def load_dataset(file_path=None):
37
  default_data = [
38
  {'text': 'Example sentence 1', 'label': 'label1'},
39
  {'text': 'Example sentence 2', 'label': 'label2'},
40
- # Add more example data as needed
41
  ]
42
  return list_to_dataframe(default_data)
43
 
@@ -52,55 +49,48 @@ def load_dataset(file_path=None):
52
  # Preprocess the data
53
  def preprocess_data(df):
54
  # Add your preprocessing steps here
55
- # For example: cleaning, tokenization, etc.
56
  return df
57
 
58
  # Train your model
59
  def train_model(df):
60
- # Split the dataset into training and testing sets
61
  train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
62
 
63
  # Load your pre-trained model and tokenizer from Hugging Face
64
  tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
65
  model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
66
 
67
- # Add your training code here
68
- # This may involve tokenizing the data and feeding it into the model
69
  return model
70
 
71
  # Define the Gradio interface function
72
  def predict(input_text):
73
- # Load the model and tokenizer
74
  tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
75
  model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
76
 
77
- # Tokenize input and make predictions
78
  inputs = tokenizer(input_text, return_tensors="pt")
79
  with torch.no_grad():
80
  outputs = model(**inputs)
81
 
82
- # Process the outputs as needed (e.g., extracting relevant information)
83
  return outputs.last_hidden_state
84
 
85
  # Build the Gradio interface
86
  def build_interface(file_path=None):
87
- df = load_dataset(file_path) # Load your dataset
88
  if df is None:
89
  return None
90
 
91
- df = preprocess_data(df) # Preprocess the dataset
92
- model = train_model(df) # Train your model
93
 
94
  iface = gr.Interface(
95
  fn=predict,
96
- inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
97
  outputs="text"
98
  )
99
  return iface
100
 
101
  # Run the Gradio interface
102
  if __name__ == "__main__":
103
- # You can specify a file_path here if you have a specific file to use
104
  file_path = None # Change this to your specific file path if needed
105
  iface = build_interface(file_path=file_path)
106
  if iface:
 
 
1
  import os
2
  import subprocess
3
 
 
20
 
21
  # Function to convert a list to a DataFrame
22
  def list_to_dataframe(data_list):
 
23
  df = pd.DataFrame(data_list)
24
  return df
25
 
 
35
  default_data = [
36
  {'text': 'Example sentence 1', 'label': 'label1'},
37
  {'text': 'Example sentence 2', 'label': 'label2'},
 
38
  ]
39
  return list_to_dataframe(default_data)
40
 
 
49
  # Preprocess the data
50
  def preprocess_data(df):
51
  # Add your preprocessing steps here
 
52
  return df
53
 
54
  # Train your model
55
  def train_model(df):
 
56
  train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
57
 
58
  # Load your pre-trained model and tokenizer from Hugging Face
59
  tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
60
  model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
61
 
62
+ # Training code placeholder
 
63
  return model
64
 
65
  # Define the Gradio interface function
66
  def predict(input_text):
 
67
  tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
68
  model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
69
 
 
70
  inputs = tokenizer(input_text, return_tensors="pt")
71
  with torch.no_grad():
72
  outputs = model(**inputs)
73
 
 
74
  return outputs.last_hidden_state
75
 
76
  # Build the Gradio interface
77
  def build_interface(file_path=None):
78
+ df = load_dataset(file_path)
79
  if df is None:
80
  return None
81
 
82
+ df = preprocess_data(df)
83
+ model = train_model(df)
84
 
85
  iface = gr.Interface(
86
  fn=predict,
87
+ inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
88
  outputs="text"
89
  )
90
  return iface
91
 
92
  # Run the Gradio interface
93
  if __name__ == "__main__":
 
94
  file_path = None # Change this to your specific file path if needed
95
  iface = build_interface(file_path=file_path)
96
  if iface: