Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Install necessary libraries
|
2 |
import os
|
3 |
import subprocess
|
4 |
|
@@ -21,7 +20,6 @@ from sklearn.model_selection import train_test_split
|
|
21 |
|
22 |
# Function to convert a list to a DataFrame
|
23 |
def list_to_dataframe(data_list):
|
24 |
-
# Convert the list to a DataFrame (assuming it's a list of dicts or tuples)
|
25 |
df = pd.DataFrame(data_list)
|
26 |
return df
|
27 |
|
@@ -37,7 +35,6 @@ def load_dataset(file_path=None):
|
|
37 |
default_data = [
|
38 |
{'text': 'Example sentence 1', 'label': 'label1'},
|
39 |
{'text': 'Example sentence 2', 'label': 'label2'},
|
40 |
-
# Add more example data as needed
|
41 |
]
|
42 |
return list_to_dataframe(default_data)
|
43 |
|
@@ -52,55 +49,48 @@ def load_dataset(file_path=None):
|
|
52 |
# Preprocess the data
|
53 |
def preprocess_data(df):
|
54 |
# Add your preprocessing steps here
|
55 |
-
# For example: cleaning, tokenization, etc.
|
56 |
return df
|
57 |
|
58 |
# Train your model
|
59 |
def train_model(df):
|
60 |
-
# Split the dataset into training and testing sets
|
61 |
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
62 |
|
63 |
# Load your pre-trained model and tokenizer from Hugging Face
|
64 |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
65 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
66 |
|
67 |
-
#
|
68 |
-
# This may involve tokenizing the data and feeding it into the model
|
69 |
return model
|
70 |
|
71 |
# Define the Gradio interface function
|
72 |
def predict(input_text):
|
73 |
-
# Load the model and tokenizer
|
74 |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
75 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
76 |
|
77 |
-
# Tokenize input and make predictions
|
78 |
inputs = tokenizer(input_text, return_tensors="pt")
|
79 |
with torch.no_grad():
|
80 |
outputs = model(**inputs)
|
81 |
|
82 |
-
# Process the outputs as needed (e.g., extracting relevant information)
|
83 |
return outputs.last_hidden_state
|
84 |
|
85 |
# Build the Gradio interface
|
86 |
def build_interface(file_path=None):
|
87 |
-
df = load_dataset(file_path)
|
88 |
if df is None:
|
89 |
return None
|
90 |
|
91 |
-
df = preprocess_data(df)
|
92 |
-
model = train_model(df)
|
93 |
|
94 |
iface = gr.Interface(
|
95 |
fn=predict,
|
96 |
-
inputs=gr.
|
97 |
outputs="text"
|
98 |
)
|
99 |
return iface
|
100 |
|
101 |
# Run the Gradio interface
|
102 |
if __name__ == "__main__":
|
103 |
-
# You can specify a file_path here if you have a specific file to use
|
104 |
file_path = None # Change this to your specific file path if needed
|
105 |
iface = build_interface(file_path=file_path)
|
106 |
if iface:
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
|
|
|
20 |
|
21 |
# Function to convert a list to a DataFrame
|
22 |
def list_to_dataframe(data_list):
|
|
|
23 |
df = pd.DataFrame(data_list)
|
24 |
return df
|
25 |
|
|
|
35 |
default_data = [
|
36 |
{'text': 'Example sentence 1', 'label': 'label1'},
|
37 |
{'text': 'Example sentence 2', 'label': 'label2'},
|
|
|
38 |
]
|
39 |
return list_to_dataframe(default_data)
|
40 |
|
|
|
49 |
# Preprocess the data
|
50 |
def preprocess_data(df):
|
51 |
# Add your preprocessing steps here
|
|
|
52 |
return df
|
53 |
|
54 |
# Train your model
|
55 |
def train_model(df):
|
|
|
56 |
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
57 |
|
58 |
# Load your pre-trained model and tokenizer from Hugging Face
|
59 |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
60 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
61 |
|
62 |
+
# Training code placeholder
|
|
|
63 |
return model
|
64 |
|
65 |
# Define the Gradio interface function
|
66 |
def predict(input_text):
|
|
|
67 |
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
68 |
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
|
69 |
|
|
|
70 |
inputs = tokenizer(input_text, return_tensors="pt")
|
71 |
with torch.no_grad():
|
72 |
outputs = model(**inputs)
|
73 |
|
|
|
74 |
return outputs.last_hidden_state
|
75 |
|
76 |
# Build the Gradio interface
|
77 |
def build_interface(file_path=None):
|
78 |
+
df = load_dataset(file_path)
|
79 |
if df is None:
|
80 |
return None
|
81 |
|
82 |
+
df = preprocess_data(df)
|
83 |
+
model = train_model(df)
|
84 |
|
85 |
iface = gr.Interface(
|
86 |
fn=predict,
|
87 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
|
88 |
outputs="text"
|
89 |
)
|
90 |
return iface
|
91 |
|
92 |
# Run the Gradio interface
|
93 |
if __name__ == "__main__":
|
|
|
94 |
file_path = None # Change this to your specific file path if needed
|
95 |
iface = build_interface(file_path=file_path)
|
96 |
if iface:
|