Engineer / app.py
atifsial123's picture
Update app.py
c68cde2 verified
raw
history blame
1.87 kB
import os
import pandas as pd
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
# Load the dataset containing PEC numbers and names
def load_dataset(file_path='PEC_Numbers_and_Names.xlsx'):
df = pd.read_excel(file_path)
return df
# Load the model and tokenizer from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
# Define the function to get the name based on the PEC number
def get_name(pec_number, df):
result = df[df['PEC No.'] == pec_number]
if not result.empty:
return result.iloc[0]['Name']
else:
return "PEC Number not found."
# Function to process the PEC number using the Hugging Face model
def process_with_model(pec_number):
inputs = tokenizer(pec_number, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Here, we simply return the last hidden state as a string representation
# In a real application, you might want to use this in a more meaningful way
return outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
# Combine both functions to create a prediction
def predict(pec_number):
name = get_name(pec_number, df)
model_output = process_with_model(pec_number)
return f"Name: {name}\nModel Output: {model_output}"
# Load the dataset
df = load_dataset()
# Build the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=1, placeholder="Enter PEC Number..."),
outputs="text",
title="PEC Number Lookup with Model Integration",
description="Enter a PEC number to retrieve the corresponding name and process it with a Hugging Face model."
)
# Run the Gradio interface
if __name__ == "__main__":
iface.launch()