Engineer / app.py
atifsial123's picture
Update app.py
cb24176 verified
raw
history blame
1.72 kB
import os
os.system('pip install transformers')
# Import the necessary libraries
import os
os.system('pip install torch')
# Import the necessary libraries
# Import the necessary libraries
from transformers import AutoModel, AutoTokenizer
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split # Corrected import statement
import pandas as pd
import gradio as gr
# Load the pre-trained model and tokenizer
model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True)
# Function to load the dataset
def load_dataset():
df = pd.read_excel("your_dataset.xlsx") # Ensure the file name and path are correct
print("Columns in the dataset:", df.columns.tolist())
return df
# Example function to search by name and return the PEC number
def search_by_name(name, df):
name_matches = df[df['Name'].str.contains(name, case=False, na=False)]
if not name_matches.empty:
return f"Your PEC number: {name_matches['PEC No'].values[0]}"
else:
return "No matches found for your name."
# Gradio interface
def build_interface():
df = load_dataset() # Load your dataset
iface = gr.Interface(
fn=lambda name: search_by_name(name, df),
inputs=gr.Textbox(label="Please write your Name"),
outputs=gr.Textbox(label="Your PEC number"),
title="PEC Number Lookup",
description="Enter your name to find your PEC number."
)
return iface
# Main function to run the Gradio app
if __name__ == "__main__":
iface = build_interface()
iface.launch()