Spaces:
Build error
Build error
| import os | |
| os.system('pip install transformers') | |
| # Import the necessary libraries | |
| import os | |
| os.system('pip install torch') | |
| # Import the necessary libraries | |
| # Import the necessary libraries | |
| from transformers import AutoModel, AutoTokenizer | |
| import torch | |
| from torch.utils.data import DataLoader, Dataset | |
| from sklearn.model_selection import train_test_split # Corrected import statement | |
| import pandas as pd | |
| import gradio as gr | |
| # Load the pre-trained model and tokenizer | |
| model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) | |
| # Function to load the dataset | |
| def load_dataset(): | |
| df = pd.read_excel("your_dataset.xlsx") # Ensure the file name and path are correct | |
| print("Columns in the dataset:", df.columns.tolist()) | |
| return df | |
| # Example function to search by name and return the PEC number | |
| def search_by_name(name, df): | |
| name_matches = df[df['Name'].str.contains(name, case=False, na=False)] | |
| if not name_matches.empty: | |
| return f"Your PEC number: {name_matches['PEC No'].values[0]}" | |
| else: | |
| return "No matches found for your name." | |
| # Gradio interface | |
| def build_interface(): | |
| df = load_dataset() # Load your dataset | |
| iface = gr.Interface( | |
| fn=lambda name: search_by_name(name, df), | |
| inputs=gr.Textbox(label="Please write your Name"), | |
| outputs=gr.Textbox(label="Your PEC number"), | |
| title="PEC Number Lookup", | |
| description="Enter your name to find your PEC number." | |
| ) | |
| return iface | |
| # Main function to run the Gradio app | |
| if __name__ == "__main__": | |
| iface = build_interface() | |
| iface.launch() | |