Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,25 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
import
|
4 |
|
5 |
-
|
6 |
-
@gr.on_startup()
|
7 |
-
def load_model():
|
8 |
-
global tokenizer, model
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("web3se/SmartBERT-v3")
|
10 |
-
model = AutoModelForSequenceClassification.from_pretrained("web3se/SmartBERT-v3")
|
11 |
-
model.eval()
|
12 |
-
return model, tokenizer
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
try:
|
20 |
-
# Tokenize input
|
21 |
-
inputs = tokenizer(contract_code, return_tensors="pt", truncation=True, max_length=512)
|
22 |
-
|
23 |
-
# Perform inference
|
24 |
-
with torch.no_grad():
|
25 |
-
outputs = model(**inputs)
|
26 |
-
|
27 |
-
# Process outputs
|
28 |
-
logits = outputs.logits
|
29 |
-
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
30 |
-
|
31 |
-
# Get predicted class and confidence
|
32 |
-
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
33 |
-
confidence = probabilities[0, predicted_class].item()
|
34 |
-
|
35 |
-
# Map class index to label
|
36 |
-
labels = model.config.id2label
|
37 |
-
predicted_label = labels[predicted_class]
|
38 |
-
|
39 |
-
# Format all class probabilities for display
|
40 |
-
all_probs = {labels[i]: f"{prob.item()*100:.2f}%" for i, prob in enumerate(probabilities[0])}
|
41 |
-
sorted_probs = dict(sorted(all_probs.items(), key=lambda item: float(item[1].rstrip('%')), reverse=True))
|
42 |
-
|
43 |
-
# Format the result as markdown for better display
|
44 |
-
result_md = f"## Analysis Results\n\n"
|
45 |
-
result_md += f"**Prediction:** {predicted_label}\n\n"
|
46 |
-
result_md += f"**Confidence:** {confidence*100:.2f}%\n\n"
|
47 |
-
result_md += "### All Class Probabilities:\n\n"
|
48 |
-
|
49 |
-
for label, prob in sorted_probs.items():
|
50 |
-
result_md += f"- {label}: {prob}\n"
|
51 |
-
|
52 |
-
return result_md
|
53 |
-
|
54 |
-
except Exception as e:
|
55 |
-
return f"Error: {str(e)}"
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
This app uses web3se/SmartBERT-v3 model to analyze smart contracts.
|
61 |
-
Simply paste your smart contract code in the text area below and click "Analyze".
|
62 |
-
"""
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
outputs=
|
68 |
-
|
69 |
-
description=description,
|
70 |
-
examples=[
|
71 |
-
# You can add example smart contracts here
|
72 |
-
["pragma solidity ^0.8.0;\n\ncontract SimpleStorage {\n uint256 private value;\n \n function set(uint256 _value) public {\n value = _value;\n }\n \n function get() public view returns (uint256) {\n return value;\n }\n}"]
|
73 |
-
],
|
74 |
-
allow_flagging="never"
|
75 |
-
)
|
76 |
|
77 |
-
#
|
78 |
-
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import RobertaTokenizer, RobertaForMaskedLM, pipeline
|
4 |
|
5 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load SmartBERT v3
|
8 |
+
model_name = "web3se/SmartBERT-v3"
|
9 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
10 |
+
model = RobertaForMaskedLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Define API input format
|
13 |
+
class ContractRequest(BaseModel):
|
14 |
+
contract_code: str
|
|
|
|
|
|
|
15 |
|
16 |
+
@app.post("/analyze/")
|
17 |
+
async def analyze_contract(request: ContractRequest):
|
18 |
+
fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
19 |
+
outputs = fill_mask(request.contract_code)
|
20 |
+
return {"predictions": outputs}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Run the FastAPI server
|
23 |
+
if __name__ == "__main__":
|
24 |
+
import uvicorn
|
25 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|