|  |  | 
					
						
						|  |  | 
					
						
						|  | import yaml | 
					
						
						|  | import torch | 
					
						
						|  | from omegaconf import OmegaConf | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | import os | 
					
						
						|  | from modules import devices | 
					
						
						|  | from annotator.annotator_path import models_path | 
					
						
						|  | from annotator.lama.saicinpainting.training.trainers import load_checkpoint | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LamaInpainting: | 
					
						
						|  | model_dir = os.path.join(models_path, "lama") | 
					
						
						|  |  | 
					
						
						|  | def __init__(self): | 
					
						
						|  | self.model = None | 
					
						
						|  | self.device = devices.get_device_for("controlnet") | 
					
						
						|  |  | 
					
						
						|  | def load_model(self): | 
					
						
						|  | remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetLama.pth" | 
					
						
						|  | modelpath = os.path.join(self.model_dir, "ControlNetLama.pth") | 
					
						
						|  | if not os.path.exists(modelpath): | 
					
						
						|  | from basicsr.utils.download_util import load_file_from_url | 
					
						
						|  | load_file_from_url(remote_model_path, model_dir=self.model_dir) | 
					
						
						|  | config_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.yaml') | 
					
						
						|  | cfg = yaml.safe_load(open(config_path, 'rt')) | 
					
						
						|  | cfg = OmegaConf.create(cfg) | 
					
						
						|  | cfg.training_model.predict_only = True | 
					
						
						|  | cfg.visualizer.kind = 'noop' | 
					
						
						|  | self.model = load_checkpoint(cfg, os.path.abspath(modelpath), strict=False, map_location='cpu') | 
					
						
						|  | self.model = self.model.to(self.device) | 
					
						
						|  | self.model.eval() | 
					
						
						|  |  | 
					
						
						|  | def unload_model(self): | 
					
						
						|  | if self.model is not None: | 
					
						
						|  | self.model.cpu() | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, input_image): | 
					
						
						|  | if self.model is None: | 
					
						
						|  | self.load_model() | 
					
						
						|  | self.model.to(self.device) | 
					
						
						|  | color = np.ascontiguousarray(input_image[:, :, 0:3]).astype(np.float32) / 255.0 | 
					
						
						|  | mask = np.ascontiguousarray(input_image[:, :, 3:4]).astype(np.float32) / 255.0 | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | color = torch.from_numpy(color).float().to(self.device) | 
					
						
						|  | mask = torch.from_numpy(mask).float().to(self.device) | 
					
						
						|  | mask = (mask > 0.5).float() | 
					
						
						|  | color = color * (1 - mask) | 
					
						
						|  | image_feed = torch.cat([color, mask], dim=2) | 
					
						
						|  | image_feed = rearrange(image_feed, 'h w c -> 1 c h w') | 
					
						
						|  | result = self.model(image_feed)[0] | 
					
						
						|  | result = rearrange(result, 'c h w -> h w c') | 
					
						
						|  | result = result * mask + color * (1 - mask) | 
					
						
						|  | result *= 255.0 | 
					
						
						|  | return result.detach().cpu().numpy().clip(0, 255).astype(np.uint8) | 
					
						
						|  |  |