|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import torch | 
					
						
						|  | import numpy as np | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | from annotator.pidinet.model import pidinet | 
					
						
						|  | from annotator.util import annotator_ckpts_path, safe_step | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PidiNetDetector: | 
					
						
						|  | def __init__(self): | 
					
						
						|  | remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth" | 
					
						
						|  | modelpath = os.path.join(annotator_ckpts_path, "table5_pidinet.pth") | 
					
						
						|  | if not os.path.exists(modelpath): | 
					
						
						|  | from basicsr.utils.download_util import load_file_from_url | 
					
						
						|  | load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) | 
					
						
						|  | self.netNetwork = pidinet() | 
					
						
						|  |  | 
					
						
						|  | self.netNetwork.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(modelpath, map_location=torch.device('cpu'))['state_dict'].items()}) | 
					
						
						|  |  | 
					
						
						|  | self.netNetwork = self.netNetwork.cpu() | 
					
						
						|  | self.netNetwork.eval() | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, input_image, safe=False): | 
					
						
						|  | assert input_image.ndim == 3 | 
					
						
						|  | input_image = input_image[:, :, ::-1].copy() | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  |  | 
					
						
						|  | image_pidi = torch.from_numpy(input_image).float().cpu() | 
					
						
						|  | image_pidi = image_pidi / 255.0 | 
					
						
						|  | image_pidi = rearrange(image_pidi, 'h w c -> 1 c h w') | 
					
						
						|  | edge = self.netNetwork(image_pidi)[-1] | 
					
						
						|  | edge = edge.cpu().numpy() | 
					
						
						|  | if safe: | 
					
						
						|  | edge = safe_step(edge) | 
					
						
						|  | edge = (edge * 255.0).clip(0, 255).astype(np.uint8) | 
					
						
						|  | return edge[0][0] | 
					
						
						|  |  |