File size: 24,175 Bytes
			
			| 18dd6ad | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | '''
modified by  lihaoweicv
pytorch version
'''
'''
M-LSD
Copyright 2021-present NAVER Corp.
Apache License v2.0
'''
import os
import numpy as np
import cv2
import torch
from  torch.nn import  functional as F
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
    '''
    tpMap:
    center: tpMap[1, 0, :, :]
    displacement: tpMap[1, 1:5, :, :]
    '''
    b, c, h, w = tpMap.shape
    assert  b==1, 'only support bsize==1'
    displacement = tpMap[:, 1:5, :, :][0]
    center = tpMap[:, 0, :, :]
    heat = torch.sigmoid(center)
    hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
    keep = (hmax == heat).float()
    heat = heat * keep
    heat = heat.reshape(-1, )
    scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
    yy = torch.floor_divide(indices, w).unsqueeze(-1)
    xx = torch.fmod(indices, w).unsqueeze(-1)
    ptss = torch.cat((yy, xx),dim=-1)
    ptss   = ptss.detach().cpu().numpy()
    scores = scores.detach().cpu().numpy()
    displacement = displacement.detach().cpu().numpy()
    displacement = displacement.transpose((1,2,0))
    return  ptss, scores, displacement
def pred_lines(image, model,
               input_shape=[512, 512],
               score_thr=0.10,
               dist_thr=20.0):
    h, w, _ = image.shape
    h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
    resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
                                    np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
    resized_image = resized_image.transpose((2,0,1))
    batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
    batch_image = (batch_image / 127.5) - 1.0
#    batch_image = torch.from_numpy(batch_image).float().cuda()
    batch_image = torch.from_numpy(batch_image).float().cpu()
    outputs = model(batch_image)
    pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
    start = vmap[:, :, :2]
    end = vmap[:, :, 2:]
    dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
    segments_list = []
    for center, score in zip(pts, pts_score):
        y, x = center
        distance = dist_map[y, x]
        if score > score_thr and distance > dist_thr:
            disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
            x_start = x + disp_x_start
            y_start = y + disp_y_start
            x_end = x + disp_x_end
            y_end = y + disp_y_end
            segments_list.append([x_start, y_start, x_end, y_end])
    lines = 2 * np.array(segments_list)  # 256 > 512
    lines[:, 0] = lines[:, 0] * w_ratio
    lines[:, 1] = lines[:, 1] * h_ratio
    lines[:, 2] = lines[:, 2] * w_ratio
    lines[:, 3] = lines[:, 3] * h_ratio
    return lines
def pred_squares(image,
                 model,
                 input_shape=[512, 512],
                 params={'score': 0.06,
                         'outside_ratio': 0.28,
                         'inside_ratio': 0.45,
                         'w_overlap': 0.0,
                         'w_degree': 1.95,
                         'w_length': 0.0,
                         'w_area': 1.86,
                         'w_center': 0.14}):
    '''
    shape = [height, width]
    '''
    h, w, _ = image.shape
    original_shape = [h, w]
    resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
                                    np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
    resized_image = resized_image.transpose((2, 0, 1))
    batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
    batch_image = (batch_image / 127.5) - 1.0
#    batch_image = torch.from_numpy(batch_image).float().cuda()
    batch_image = torch.from_numpy(batch_image).float().cpu()
    outputs = model(batch_image)
    pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
    start = vmap[:, :, :2]  # (x, y)
    end = vmap[:, :, 2:]  # (x, y)
    dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
    junc_list = []
    segments_list = []
    for junc, score in zip(pts, pts_score):
        y, x = junc
        distance = dist_map[y, x]
        if score > params['score'] and distance > 20.0:
            junc_list.append([x, y])
            disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
            d_arrow = 1.0
            x_start = x + d_arrow * disp_x_start
            y_start = y + d_arrow * disp_y_start
            x_end = x + d_arrow * disp_x_end
            y_end = y + d_arrow * disp_y_end
            segments_list.append([x_start, y_start, x_end, y_end])
    segments = np.array(segments_list)
    ####### post processing for squares
    # 1. get unique lines
    point = np.array([[0, 0]])
    point = point[0]
    start = segments[:, :2]
    end = segments[:, 2:]
    diff = start - end
    a = diff[:, 1]
    b = -diff[:, 0]
    c = a * start[:, 0] + b * start[:, 1]
    d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
    theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
    theta[theta < 0.0] += 180
    hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
    d_quant = 1
    theta_quant = 2
    hough[:, 0] //= d_quant
    hough[:, 1] //= theta_quant
    _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
    acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
    idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
    yx_indices = hough[indices, :].astype('int32')
    acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
    idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
    acc_map_np = acc_map
    # acc_map = acc_map[None, :, :, None]
    #
    # ### fast suppression using tensorflow op
    # acc_map = tf.constant(acc_map, dtype=tf.float32)
    # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
    # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
    # flatten_acc_map = tf.reshape(acc_map, [1, -1])
    # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
    # _, h, w, _ = acc_map.shape
    # y = tf.expand_dims(topk_indices // w, axis=-1)
    # x = tf.expand_dims(topk_indices % w, axis=-1)
    # yx = tf.concat([y, x], axis=-1)
    ### fast suppression using pytorch op
    acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
    _,_, h, w = acc_map.shape
    max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
    acc_map = acc_map * ( (acc_map == max_acc_map).float() )
    flatten_acc_map = acc_map.reshape([-1, ])
    scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
    yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
    xx = torch.fmod(indices, w).unsqueeze(-1)
    yx = torch.cat((yy, xx), dim=-1)
    yx = yx.detach().cpu().numpy()
    topk_values = scores.detach().cpu().numpy()
    indices = idx_map[yx[:, 0], yx[:, 1]]
    basis = 5 // 2
    merged_segments = []
    for yx_pt, max_indice, value in zip(yx, indices, topk_values):
        y, x = yx_pt
        if max_indice == -1 or value == 0:
            continue
        segment_list = []
        for y_offset in range(-basis, basis + 1):
            for x_offset in range(-basis, basis + 1):
                indice = idx_map[y + y_offset, x + x_offset]
                cnt = int(acc_map_np[y + y_offset, x + x_offset])
                if indice != -1:
                    segment_list.append(segments[indice])
                if cnt > 1:
                    check_cnt = 1
                    current_hough = hough[indice]
                    for new_indice, new_hough in enumerate(hough):
                        if (current_hough == new_hough).all() and indice != new_indice:
                            segment_list.append(segments[new_indice])
                            check_cnt += 1
                        if check_cnt == cnt:
                            break
        group_segments = np.array(segment_list).reshape([-1, 2])
        sorted_group_segments = np.sort(group_segments, axis=0)
        x_min, y_min = sorted_group_segments[0, :]
        x_max, y_max = sorted_group_segments[-1, :]
        deg = theta[max_indice]
        if deg >= 90:
            merged_segments.append([x_min, y_max, x_max, y_min])
        else:
            merged_segments.append([x_min, y_min, x_max, y_max])
    # 2. get intersections
    new_segments = np.array(merged_segments)  # (x1, y1, x2, y2)
    start = new_segments[:, :2]  # (x1, y1)
    end = new_segments[:, 2:]  # (x2, y2)
    new_centers = (start + end) / 2.0
    diff = start - end
    dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
    # ax + by = c
    a = diff[:, 1]
    b = -diff[:, 0]
    c = a * start[:, 0] + b * start[:, 1]
    pre_det = a[:, None] * b[None, :]
    det = pre_det - np.transpose(pre_det)
    pre_inter_y = a[:, None] * c[None, :]
    inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
    pre_inter_x = c[:, None] * b[None, :]
    inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
    inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
    # 3. get corner information
    # 3.1 get distance
    '''
    dist_segments:
        | dist(0), dist(1), dist(2), ...|
    dist_inter_to_segment1:
        | dist(inter,0), dist(inter,0), dist(inter,0), ... |
        | dist(inter,1), dist(inter,1), dist(inter,1), ... |
        ...
    dist_inter_to_semgnet2:
        | dist(inter,0), dist(inter,1), dist(inter,2), ... |
        | dist(inter,0), dist(inter,1), dist(inter,2), ... |
        ...
    '''
    dist_inter_to_segment1_start = np.sqrt(
        np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    dist_inter_to_segment1_end = np.sqrt(
        np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    dist_inter_to_segment2_start = np.sqrt(
        np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    dist_inter_to_segment2_end = np.sqrt(
        np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    # sort ascending
    dist_inter_to_segment1 = np.sort(
        np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
        axis=-1)  # [n_batch, n_batch, 2]
    dist_inter_to_segment2 = np.sort(
        np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
        axis=-1)  # [n_batch, n_batch, 2]
    # 3.2 get degree
    inter_to_start = new_centers[:, None, :] - inter_pts
    deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
    deg_inter_to_start[deg_inter_to_start < 0.0] += 360
    inter_to_end = new_centers[None, :, :] - inter_pts
    deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
    deg_inter_to_end[deg_inter_to_end < 0.0] += 360
    '''
    B -- G
    |    |
    C -- R
    B : blue / G: green / C: cyan / R: red
    0 -- 1
    |    |
    3 -- 2
    '''
    # rename variables
    deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
    # sort deg ascending
    deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
    deg_diff_map = np.abs(deg1_map - deg2_map)
    # we only consider the smallest degree of intersect
    deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
    # define available degree range
    deg_range = [60, 120]
    corner_dict = {corner_info: [] for corner_info in range(4)}
    inter_points = []
    for i in range(inter_pts.shape[0]):
        for j in range(i + 1, inter_pts.shape[1]):
            # i, j > line index, always i < j
            x, y = inter_pts[i, j, :]
            deg1, deg2 = deg_sort[i, j, :]
            deg_diff = deg_diff_map[i, j]
            check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
            outside_ratio = params['outside_ratio']  # over ratio >>> drop it!
            inside_ratio = params['inside_ratio']  # over ratio >>> drop it!
            check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
                               dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
                              (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
                               dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
                             ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
                               dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
                              (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
                               dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
            if check_degree and check_distance:
                corner_info = None
                if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
                        (deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
                    corner_info, color_info = 0, 'blue'
                elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
                    corner_info, color_info = 1, 'green'
                elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
                    corner_info, color_info = 2, 'black'
                elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
                        (deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
                    corner_info, color_info = 3, 'cyan'
                else:
                    corner_info, color_info = 4, 'red'  # we don't use it
                    continue
                corner_dict[corner_info].append([x, y, i, j])
                inter_points.append([x, y])
    square_list = []
    connect_list = []
    segments_list = []
    for corner0 in corner_dict[0]:
        for corner1 in corner_dict[1]:
            connect01 = False
            for corner0_line in corner0[2:]:
                if corner0_line in corner1[2:]:
                    connect01 = True
                    break
            if connect01:
                for corner2 in corner_dict[2]:
                    connect12 = False
                    for corner1_line in corner1[2:]:
                        if corner1_line in corner2[2:]:
                            connect12 = True
                            break
                    if connect12:
                        for corner3 in corner_dict[3]:
                            connect23 = False
                            for corner2_line in corner2[2:]:
                                if corner2_line in corner3[2:]:
                                    connect23 = True
                                    break
                            if connect23:
                                for corner3_line in corner3[2:]:
                                    if corner3_line in corner0[2:]:
                                        # SQUARE!!!
                                        '''
                                        0 -- 1
                                        |    |
                                        3 -- 2
                                        square_list:
                                            order: 0 > 1 > 2 > 3
                                            | x0, y0, x1, y1, x2, y2, x3, y3 |
                                            | x0, y0, x1, y1, x2, y2, x3, y3 |
                                            ...
                                        connect_list:
                                            order: 01 > 12 > 23 > 30
                                            | line_idx01, line_idx12, line_idx23, line_idx30 |
                                            | line_idx01, line_idx12, line_idx23, line_idx30 |
                                            ...
                                        segments_list:
                                            order: 0 > 1 > 2 > 3
                                            | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
                                            | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
                                            ...
                                        '''
                                        square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
                                        connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
                                        segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
    def check_outside_inside(segments_info, connect_idx):
        # return 'outside or inside', min distance, cover_param, peri_param
        if connect_idx == segments_info[0]:
            check_dist_mat = dist_inter_to_segment1
        else:
            check_dist_mat = dist_inter_to_segment2
        i, j = segments_info
        min_dist, max_dist = check_dist_mat[i, j, :]
        connect_dist = dist_segments[connect_idx]
        if max_dist > connect_dist:
            return 'outside', min_dist, 0, 1
        else:
            return 'inside', min_dist, -1, -1
    top_square = None
    try:
        map_size = input_shape[0] / 2
        squares = np.array(square_list).reshape([-1, 4, 2])
        score_array = []
        connect_array = np.array(connect_list)
        segments_array = np.array(segments_list).reshape([-1, 4, 2])
        # get degree of corners:
        squares_rollup = np.roll(squares, 1, axis=1)
        squares_rolldown = np.roll(squares, -1, axis=1)
        vec1 = squares_rollup - squares
        normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
        vec2 = squares_rolldown - squares
        normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
        inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1)  # [n_squares, 4]
        squares_degree = np.arccos(inner_products) * 180 / np.pi  # [n_squares, 4]
        # get square score
        overlap_scores = []
        degree_scores = []
        length_scores = []
        for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
            '''
            0 -- 1
            |    |
            3 -- 2
            # segments: [4, 2]
            # connects: [4]
            '''
            ###################################### OVERLAP SCORES
            cover = 0
            perimeter = 0
            # check 0 > 1 > 2 > 3
            square_length = []
            for start_idx in range(4):
                end_idx = (start_idx + 1) % 4
                connect_idx = connects[start_idx]  # segment idx of segment01
                start_segments = segments[start_idx]
                end_segments = segments[end_idx]
                start_point = square[start_idx]
                end_point = square[end_idx]
                # check whether outside or inside
                start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
                                                                                                      connect_idx)
                end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
                cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
                perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
                square_length.append(
                    dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
            overlap_scores.append(cover / perimeter)
            ######################################
            ###################################### DEGREE SCORES
            '''
            deg0 vs deg2
            deg1 vs deg3
            '''
            deg0, deg1, deg2, deg3 = degree
            deg_ratio1 = deg0 / deg2
            if deg_ratio1 > 1.0:
                deg_ratio1 = 1 / deg_ratio1
            deg_ratio2 = deg1 / deg3
            if deg_ratio2 > 1.0:
                deg_ratio2 = 1 / deg_ratio2
            degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
            ######################################
            ###################################### LENGTH SCORES
            '''
            len0 vs len2
            len1 vs len3
            '''
            len0, len1, len2, len3 = square_length
            len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
            len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
            length_scores.append((len_ratio1 + len_ratio2) / 2)
            ######################################
        overlap_scores = np.array(overlap_scores)
        overlap_scores /= np.max(overlap_scores)
        degree_scores = np.array(degree_scores)
        # degree_scores /= np.max(degree_scores)
        length_scores = np.array(length_scores)
        ###################################### AREA SCORES
        area_scores = np.reshape(squares, [-1, 4, 2])
        area_x = area_scores[:, :, 0]
        area_y = area_scores[:, :, 1]
        correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
        area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
        area_scores = 0.5 * np.abs(area_scores + correction)
        area_scores /= (map_size * map_size)  # np.max(area_scores)
        ######################################
        ###################################### CENTER SCORES
        centers = np.array([[256 // 2, 256 // 2]], dtype='float32')  # [1, 2]
        # squares: [n, 4, 2]
        square_centers = np.mean(squares, axis=1)  # [n, 2]
        center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
        center_scores = center2center / (map_size / np.sqrt(2.0))
        '''
        score_w = [overlap, degree, area, center, length]
        '''
        score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
        score_array = params['w_overlap'] * overlap_scores \
                      + params['w_degree'] * degree_scores \
                      + params['w_area'] * area_scores \
                      - params['w_center'] * center_scores \
                      + params['w_length'] * length_scores
        best_square = []
        sorted_idx = np.argsort(score_array)[::-1]
        score_array = score_array[sorted_idx]
        squares = squares[sorted_idx]
    except Exception as e:
        pass
    '''return list
    merged_lines, squares, scores
    '''
    try:
        new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
        new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
        new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
        new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
    except:
        new_segments = []
    try:
        squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
        squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
    except:
        squares = []
        score_array = []
    try:
        inter_points = np.array(inter_points)
        inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
        inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
    except:
        inter_points = []
    return new_segments, squares, score_array, inter_points
 | 
