Yolo11 / app.py
atalaydenknalbant's picture
Update app.py
0d9354b verified
raw
history blame
3.82 kB
import spaces
import supervision as sv
import PIL.Image as Image
from ultralytics import YOLO
import gradio as gr
import torch
model_filenames = [
"yolo11n.pt",
"yolo11s.pt",
"yolo11m.pt",
"yolo11l.pt",
"yolo11x.pt"
]
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I',
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q',
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'}
@spaces.GPU
def yolo_inference(image, model_id, conf_threshold, iou_threshold, max_detection):
model = YOLO(model_id)
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", interactive=True)
model_id = gr.Dropdown(
label="Model",
choices=model_filenames,
value=model_filenames[0] if model_filenames else "",
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
max_detection = gr.Slider(
label="Max Detection",
minimum=1,
step=1,
value=1,
)
yolov_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False)
yolov_infer.click(
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
)
gr.Examples(
examples=[
[
"zidane.jpg",
"yolo11s.pt",
0.25,
0.45,
1,
],
[
"bus.jpg",
"yolo11m.pt",
0.25,
0.45,
1,
],
[
"yolo_vision.jpg",
"yolo11x.pt",
0.25,
0.45,
1,
],
],
fn=yolo_inference,
inputs=[
image,
model_id,
conf_threshold,
iou_threshold,
max_detection,
],
outputs=[output_image],
cache_examples="lazy",
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
Yolov11
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch()